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Abstract: The aim of this paper is to consider a future implementation of a curious machine that learns through analogy-
making. I will describe what I mean by curiosity, and consider how the state of the art in computational analogy-making 
provides a good starting-point for the endeavour by considering how one particular such architecture, Copycat, might be 
extended. I will focus on how a future system might begin to self-organise and learn, reducing the reliance on human hand-
coding of parameters, and making steps towards becoming genuinely domain-general, and how such a system could be 
considered to be being curious. 

Keywords : curiosity, analogy-making, learning, concepts, case-based reasoning, derivational analogies 

 

A year spent in artificial intelligence is enough to 
make one believe in God – Anon. 

Introduction 
This paper was originally written for a seminar class 
at the MIT Media Lab, entitled ‘Curious machines’. 
The aim was to explore what curiosity is, its role in 
intelligence and how curiosity might be 
implemented in future AI systems, asking questions 
like ‘How can we build machines that are as curious 
learners as natural systems? How can we build 
systems that have a deeper understanding of the 
learning process beyond turning the statistical crank 
of a learning algorithm?’ – see 
http://courses.media.mit.edu/2003spring/mas963. 

I’m going to start by outlining some of the features 
that a recent discussion highlighted as being 
characteristics of curious behaviour, before 
proposing a pithy and restricted characterisation of 
what it is to be curious that will guide the discussion 
in the rest of the paper. The intention is to discuss 
what would be necessary to make Hofstadter and 
Mitchell’s Copycat analogy-making model be a 
curious learner.  

Curiosity 
Being curious is about seeking knowledge that you 
don’t even know for sure that you’ll ever need. 
Curiosity in its fullest sense presumably requires a 
learning system and cognitive architecture complex 
enough to subserve goal-directed and flexible 
behaviour, recognition of novelty, and some degree 
of (self-)evaluation. Being curious is proactive and 
explorative, rather than a reaction to immediate 
need. The more complex and diverse the goals, 
behaviours and representations, the more complex 
the curiosity manifested. There can be different 
types of curiosity, triggered under different 
circumstances, suited to different domains, goals or 

learning styles. It also seems intuitively unlikely that 
curiosity has a unitary substrate, but this is possibly 
contentious and tangential to the points that I want 
to make next, so I won’t discuss it. 

In its barest form, a curious machine is one that 
interrogates its environment. ‘Interrogation’ has the 
requisite sense of a directed enquiry about things 
that you want to know from something/someone that 
has the answers, out of which an internal 
understanding is built. Interrogations are about 
things that you don't know about now, and don't 
necessarily need to know, but may well come in 
useful in the grand scheme of things. There's also a 
sense of a dialogue, in which you ask questions, 
narrow down the domain of enquiry, realise where 
you’re ignorant, ask more questions about the new 
things you don't understand, and accommodate this 
new knowledge. 

I hope that this will prove an illustrative rather than 
misleading way of starting to think about the 
business of being curious. It prompts certain 
observations. Importantly, you need to know some 
things already in order to know what to ask and to 
make sense of the answers. Indeed, what you know 
already will make a big difference to the kinds of 
questions it occurs to you to frame, and the way you 
interpret the answers. The order in which you are 
told things can drastically affect how easy it is to 
draw conclusions from them. It helps you and your 
interlocutor gauge your understanding to be tested. 
If you ask the right questions, you can draw 
conclusions that may have general applicability very 
quickly. A popular way of answering a question is 
to provide examples and counter-examples. 
Examples may make you see things in a new light, 
and counter-examples help you map out the 
boundaries within which new knowledge applies. 
Figuring out which questions to ask, especially 
figuring out when something crucial is missing from 
your understanding, is hard but important. For this 
reason, an unexpected answer can be very 
instructive. If you find it difficult to understand 
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something, good teachers will explain it to you by 
saying it in another way, or showing how it’s similar 
(or different) to something you already understand, 
or composed out of other things. You need to know 
when to stop asking questions as well as when more 
questions are needed. I have framed this idea of a 
question-and-answer interrogation in a very 
linguistic light, but it needn’t be at all. 

Analogy-making 
There are lots of ways to think about things and to 
learn to deal with new problems and concepts. 
Minsky [forthcoming, chapter 7] details a number of 
them, of which I’ve reproduced a modified sample: 

breaking it down into smaller parts  

solving a simplified version, then generalising, 
or just dealing with the extra complexities and 
exceptions one by one 
seeing how it’s similar to something you 
already know about, or reformulating the 
problem in a different domain 
describing it in a more abstract way (e.g. formal 
logic) 
meta-reflection – considering what makes a 
problem hard and where you’re going wrong  
considering whether the problem is really worth 
solving at all 
extensively searching through possibilities 

imagining how someone you respect would 
tackle the problem 

If we could build a system that was able to do all of 
these things flexibly and in different domains, we’d 
be well on our way towards a very healthy IPO. My 
focus here will be on the top two-thirds of this list, 
which I consider to fall loosely under the general 
idea of ‘learning by analogy’. This very general 
suite of approaches has been termed computational 
analogy-making [French], case-based reasoning 
[Leake], remembering and adapting [Kolodner], 
high-level perception [Chalmers, French and 
Hofstadter], and structure mapping theory 
[Gentner], amongst other names. 

I consider learning by analogy to be amongst the 
most central and powerful representational and 
learning tactics we employ. In a perverse way, this 
is evidenced by the effortlessness and invisibility of 
the processes that see these similarities and 
analogies. We constantly think of concepts in terms 
of other concepts, ignoring what is irrelevant to the 
comparison, subconsciously but effortlessly 
alighting on what is salient. We jump up and down 
levels, into different modalities and across mental 
realms. Human language’s concise expressiveness 
rests in part on words being reused for new 
purposes, enriching their associations and coopting 

their ‘inferential machinery’ [Minsky, Jokes and the 
cognitive unconscious]. This has been noted before, 
most eloquently by Hofstadter [1979, 1995; also 
quoted in Marshall, 1999]. 

Higher-level perception and Structure Mapping 
Theory 

I intend to take Hofstadter and the FARG’s 
implementations as my starting point for discussion 
of a future implementation of a curious machine that 
learns through analogy-making, but before going 
any further, we need to briefly survey the main 
debate in the computational analogy-making 
literature, which is best characterised by a 
comparison between the ‘Structure Mapping 
Theory’ and ‘Higher Level Perception’ camps 
[French, 2002]. 

According to SMT, an analogy is an ‘alignment of 
relational structure’ [Gentner & Markman, 1997]. 
Here, the relations are the internal links that 
determine the composition and arrangement of the 
structure, which are contrasted with the ‘attributes’ 
and ‘object descriptions’ which determine ‘mere-
appearance matches’. Morrison & Dietrich [1995] 
consider that Gentner et al.’s aim is to present a 
model of the comprehension (rather than the 
discovery) of analogy, where for a given structure, 
the system is able to retrieve a stored match for 
which the mapping of relations is closest. Their 
implementation, SME,  starts by seeing many local 
matches out of which a consistent large-scale 
structure coalesces, and appears to mirror certain 
salient experimental results with human subjects. 

In contrast, Hofstadter and the FARG [Hofstadter, 
1995] want to cast analogy-making as playing a 
much more central and less specialised role – 
“analogy-making is going on constantly in the 
background of the mind, helping to shape our 
perceptions of everyday situations. In our view, 
analogy is not separate from perception: analogy-
making itself is a perceptual process” [Chalmers, 
French and Hofstadter, 1991]. 

This needs a little explaining. The central point is 
that the process of building up a compound 
representation of a situation or scenario cannot be 
independent of the process of seeing a mapping 
between scenarios. Both of these processes are 
intertwined as ‘high-level perception’. High-level 
perception begins at that level of processing where 
concepts begin to play an important role. This is 
pretty nebulous, but that’s fine. We can see concepts 
as being abstract or concrete, simple or complex – 
any aggregation, processing or filtering of raw 
sensory data can be seen as conceptualising. 

The two problems in high-level perception are the 
problems of relevance and of organisation: 
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1. relevance – how do you determine what’s 
salient within the morass of low-level data, 
and pick it out to pass on to higher levels of 
processing? 

2. organisation – how do you organise all of 
that (multi-modal) data together, i.e. how 
do you determine what to clump together 
and what’s related to what? 

These two problems are critical for SMT, since if 
the wrong aspects of the perceptual data are chosen, 
or if they are organised poorly, no analogies will 
ever be found. Yet this is out of SME’s control, 
because it artificially separates the processes of 
human hand-coding of perception and its own 
mapping. The same criticism Hofstadter made of 
Bacon [Langley et al., 1987] could be made of 
SME, namely that it “was fed precisely the data 
required to derive the [Kepler’s] law” [Hofstadter, 
1995]. 

In other words, analogy-making requires 
representations to be built dynamically, extracting, 
organising and reorganising what’s salient about the 
current situation based on the current context, goals, 
beliefs, and at the same time as trying to perform 
tentative mappings with past situations and 
knowledge. To comprehend an analogy is to 
discover it – you can’t do the former in any rich, 
flexible or meaningful way without doing the latter. 

Copycat 

Copycat is intended to illustrate how the various 
strata of such a view of analogy-making as high-
level perception could operate and interact, 
involving: 

• the gradual building-up of representations 
• the role of top-down and contextual influences 

• the integration of perception and mapping 

• the exploration of many possible paths towards 
a representation 

• the radical restructuring of perceptions, when 
necessary 

Copycat considers analogies like the following: 

abc  :  abd  ::  ijkk  :  ? 

Most people would prefer ijll, but would recognise 
the validity of ijkl, ijkd, ijdd or abd, to name just a 
few. Copycat’s architecture is designed to allow top-
down and bottom-up influences to interact, 
constraining a search1 through the space of possible 

                                                             
1 Although Hofstadter avoids the word ‘search’ in 
the context of thinking because of the connotations 
of formal, efficient techniques for searching well-
defined spaces, that he rejects [Kelly, 1995]. 

mappings between letter-strings, and so producing a 
mapping to a new string, as well as providing a 
rating of the system's ‘happiness’ with its solution. 
This could be seen in three main (concurrent) tasks: 
1. build a representations of the three starting 

strings 
2. describe how to map from the source to target 

strings 
3. apply the same transformation to the third string 

There are a number of things about the Copycat 
architecture that are special or interesting. It’s split 
into three parts: 

Slipnet 

This is the high-level, long-term conceptual memory 
of Copycat (see Fig. 1), represented as a semantic 
network. It contains concepts like ‘successorship’, 
‘rightmost’, ‘opposition’ and ‘symmetry’, each of 
which are linked together by proximity (i.e. 
association) weights. Each concept has a pre-
assigned ‘conceptual depth’ and activation. The 
conceptual depth is a sort of aesthetic, subjective, 
hand-coded value intended to capture how abstract 
or interesting a concept is. The activation reflects 
the extent to which the concept appears to be 
relevant to the current problem, and how activated 
nearby/associated concepts are. 

Coderack 

The Coderack is the repository for the codelets – 
these are small, specific pieces of code that carry out 
low-level tasks. Some codelets look for particular 
patterns, or evidence that a given concept may be 
playing a role somewhere, while others build bonds 
and groups within a string, or 
bridges/correspondences between strings, and 
finally some break these structures back down again 
when Copycat seems to be hitting an impasse. 

Each codelet is selected probabilistically from the 
Coderack according to its ‘urgency’, which is partly 
hand-coded, and partly a function of the current 
activations and deformations in the Slipnet, and 
partly affected by the preceding codelets which 
triggered it. 

Workspace 

This is a sort of scratchpad on which the codelets 
operate, containing the strings, and the structures 
built up between them. The strength of a structure is 
a function of the activation and conceptual depth of 
the related concept (e.g. sameness, successorship), 
how long it has lasted, whether it conflicts with 
other structures, amongst other factors. Structures 
can be nested. I find it useful to think of the 
Workspace structures as tokens of Slipnet concept-
types. 
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Copycat is great at interacting top-down and 
bottom-up, being mostly sensible but not myopically 
systematic, and building structures so that they 
‘flex’ in the right places. Hofstadter terms the 
system’s overall approach a parallel terraced scan, 
which can be understood in search terms as 
exploring the most promising avenues 
proportionally/probabilistically more. Where the 
agenda of a depth-first search is a stack, and 
breadth-first uses a queue to decide the next node, 
the parallel terraced scan uses a stochastic priority-
queue of codelets, ordered by their ‘urgency’. These 
priorities are based on the bi-directional interactions 
between the top-down associations and concept 
activity-values in the Slipnet and the happiness and 
salience of the bottom-up structures built by the 
codelets. 

Finally, the temperature is a measure of the richness 
and internal coherence of the structures that have 
been built up so far in the Workspace. When these 
structures are weak, employing conceptually 
shallow concepts, and when large parts of the strings 
haven’t been accounted for or don’t fit, the 
temperature is high, making all the processes more 
stochastic, and increasing the urgency of dismantler 
codelets. As the system builds more coherent 
structures, the temperature drops, and the decisions 
become more deterministic and less destructive. The 
temperature can then be seen as a kind of measure of 
the system’s happiness with the solution it has 
found. As a result, Copycat may find a less 
satisfying analogy quite often (it has no memory of 
past solutions), but occasionally stumble across a 
highly satisfying solution, mirroring results with 
human experimental subjects. 

An example should suffice to convey the difference 
between more common and more satisfying 
solutions. If faced with the problem: 

abc  :  abd  ::  xyz  :  ? 

most people’s first choice would probably be xya, 
since we want to find a successor to the rightmost 
letter and so we loop back through the alphabet. 
However, a circular link from ‘z’ to ‘a’ has been 
deliberately excluded from Copycat’s conceptual 
model, which forces people to think harder. 

As a result, Copycat frequently builds up a set of 
structures on the Workspace that lead it to seek the 
successor of the rightmost letter, only to hit an 
‘impasse’ (see Fig. 2). This happens often because 
Copycat’s parameters are set so that it sees 
successorship groups more readily than 
predecessorship groups, which is intended to reflect 
human (especially Western) preferences for 
incrementing over decrementing and left-to-right 
over right-to-left. 

As a result, the solutions it comes up most 
commonly include xyz, xyy, xyd and abd. However, 

there is a solution that many people find very 
satisfying once they see it, though few people notice 
it immediately, which is wyz. This requires a mini 
paradigm shift. The impasse occurs because abc is 
described as a group of successors heading 
rightwards from the first letter of the alphabet, and 
the most obvious mapping is to see xyz 
correspondingly as a group of successors heading 
rightwards ending on the last letter of the alphabet. 
In order to scale the impasse, xyz has to be 
reconceptualised as a group of predecessors heading 
leftwards from the last letter of the alphabet. This is 
exactly symmetrical to the description of abc, 
prompting a reversal of the rule from abc to abd of 
‘replace the rightmost letter with its successor’ to 
‘replace the leftmost letter with its predecessor’. 
When I first saw this, I certainly felt that the choice 
of the seemingly uninteresting letterstrings 
microdomain as allowing for complex, 
psychologically plausible constructions was 
vindicated. Copycat finds the less satisfying 
solutions more often, but when it does find the wyz 
solution its satisfaction with the solution (as 
measured by a lower temperature) is much higher 
[See Hofstadter, 1995; and Mitchell, 1993 for a 
plethora of further letterstring puzzles that Copycat 
can solve]. 

Metacat 

Metacat [Marshall, 1999] is the second generation of 
Copycat, differing in a couple of important respects. 

Firstly, Metacat is able to produce multiple answers 
for a given problem in a single run, reporting each 
and carrying on. In contrast, Copycat would stop 
each run every time it found an answer, starting each 
run afresh and blissfully ignorant of past successes 
and failures. 

Secondly and crucially, Metacat builds a ‘trace’ of 
its operations as it goes along, capturing both an 
abstraction of the process of discovery as well as the 
nitty-gritty details of the state of the whole Copycat 
system. These extra levels of self-watching and 
remembering have a number of advantages. Metacat 
is able to avoid getting trapped in a loop or freezing 
when faced by an impasse that it has encountered 
before. In contrast, when Copycat tries to find the 
successor of ‘z’ and fails, the temperature slowly 
rises, certain structures that led to this dead end 
become more likely to be dismantled, and more 
often than not it retraces some of its steps only to try 
the very same tactic in a few iterations’ time. 
Furthermore, by maintaining a trace of its activity as 
well as details of past runs, Metacat is able to use 
past experience to avoid this folly, and head towards 
a known solution or try new avenues. The most 
important concepts employed in a given solution are 
termed ‘themes’ – by storing the themes along with 
the salient events and steps in a given run, Metacat 
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is trying to capture the essential features of a given 
situation, allowing limited comparison between 
different solutions to the same problem. 

Magnificat 

Very recently, I discovered an essay online 
discussing vague plans for the latest implementation 
in the Copycat family, named Magnificat [Roberts, 
unpublished]. Pleasingly, many of the aims and 
high-level ideas raised dovetail with those discussed 
here, though it also contains a number of 
architectural innovations that deserve greater 
consideration than I have room for. I will consider 
them in passing if I feel they can especially help. 

Lessons from the Copycat family 

I consider Hofstadter’s work on analogy-making to 
be the richest source of ideas and the most 
impressive implementation around at the moment. 
Although he focuses on micro-domains, and makes 
no claims to have modelled the thought processes of 
great scientists from the past [cf Langley, 1987], 
there is a sense that the kinds of analogies that 
Copycat is able to see involve a directed and really 
quite human-like exploration of a far greater space. 

One of the most important lessons I want to take 
away from Hofstadter et al.’s work is the need to 
build up a representation of the situation, with both 
top-down and bottom-up influencing each other, in 
order to be able to choose what’s relevant for the 
current analogy. The flipside of this is that concepts 
become rich and meaningful by virtue of the way in 
which they can be decomposed and combined into, 
and influence other concepts. I’m also conscious of 
the adaptability of Copycat’s basic architecture – at 
least in theory, with different concepts, codelets and 
their associated parameters, Copycat could be 
adapted to more or less any domain. Furthermore, 
Hofstadter claims that the parallel terraced scan is 
fairly resistant to problems of combinatorial 
explosion. 

Limitations of the Copycat family 

However, even within the letterstrings domain, 
Copycat/Metacat is limited. There are concepts that 
we might expect it to have that it lacks. For instance, 
Copycat can’t deal with sequences that aren’t 
successors or predecessors, e.g. sequences that skip 
every other letter. Importantly, it can’t deal with 
mappings involving more than one letter change, 
though apparently Metacat improves upon this. It 
can’t deal with certain types of noise, nor represent 
interleaved sequences, e.g. abacadae. It can’t devise 
analogies of its own, nor learn from counter-
examples. Finally, Metacat’s ability to see compare 
analogies is limited, as is its ability to search for past 
cases. 

Some of these issues are quibbles, but some mask 
deep-seated limitations of the architecture. After all, 
Hofstadter explicitly states that he is not especially 
considering the issues of learning or self-
organisation. Unfortunately, the Copycat system 
relies heavily on a large number of hand-coded 
parameter values that determine the various 
probabilities and relations between the system's 
different processes and the structures they build. The 
system's impressively human-like performance on a 
number of abstract, difficult problems very rich in 
internal structure (despite the limited domain) 
depends upon these preset, subjective, tweaked 
values, as well as a number of implicit judicial 
decisions with regard to the kinds of concepts that 
such a system should look for. Indeed, the choice of 
concepts and codelets was guided by five difficult 
sample problems (including the xyz one detailed 
above) that they wanted Copycat to be able to solve. 
Porting Copycat to a different domain, or expanding 
the letterstrings domain, while maintaining the 
delicate balance between the current concepts, 
would always be a labyrinthine labour-intensive 
task. 

Building on Copycat 
I’m not going to try and tackle all of these 
limitations. The goal of the discussion in this paper 
is to consider how a curious, learning analogy-
making system might be incorporated as a 
component in a much larger and more domain-
general learning system. Unfortunately though, the 
problem of getting Copycat to learn or self-organise 
to adapt itself to new domains is a deep one. I’m 
going to identify a number of different levels at 
which some sort of learning or self-organising 
mechanism (or set of mechanisms) would be 
necessary, and then discuss how easy it would be to 
build a system that could learn to operate in 
different and potentially more complex domains 
than the letterstrings based on some of these ideas. 

In the grand tradition of the Fluid Analogies 
Research Group of giving their projects capricious 
and unnecessarily clever names, I will refer to this 
sketch of a curious, self-organising, domain-general 
system that learns by making analogies as 
‘CuriousCat’. 

Searching through the parameter 
space 
If we were to take the results from even a small 
sample of human subjects on a suite of letterstring 
problems, we could use reinforcement learning 
[Sutton and Barto, 2002] or genetic algorithms (GA) 
[Holland 1975; Koza 1997] to search the space of 
parameters to find the combinations that match up 
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with the experimental data. Indeed, Hofstadter et al. 
appear to have the experimental data to do this. In 
their discussion of Copycat’s success, they 
frequently compare results from multiple Copycat 
runs with answers given by people to the same 
questions. 

I will sketch a genetic algorithm that could search 
through the parameter space  to find a vector of 
parameters for its pre-coded concepts and codelets 
that would lead it to find solutions more often that 
have a lower temperature and that match human 
choices. 

Genotype 

The genotype of the GA will be a vector of the 
parameters being tweaked. Parameters relating to 
families of codelets and related areas of the 
architecture would be located next to each other. 
Approximate upper and lower bounds could be set 
for some parameters, to keep them in line with 
human intuitions, and to try and preclude the system 
from choosing some peculiar combination that 
appears to work for the particular training set, but 
performs poorly on novel data. 

The full list of parameters would be huge, since 
Copycat employs a huge array of fudges in all of its 
computations, especially the codelets, but a partial 
list should at least include the following: 
• the association strengths between concepts in 

the Slipnet 
• conceptual depths 

• codelet urgencies 

• workspace structure happiness and salience 
values 

• the algorithm for calculating the temperature 
based on all of the above  

Phenotype 

The phenotype is a version of Copycat running with 
the parameters in its genotype. Ideally, because 
Copycat’s processing is highly stochastic, it should 
be run many times on each problem. 

Population 

The easiest population to start with would centre 
around the set of parameters that the published 
version of Copycat employs, since these parameters 
are pretty close to the optimal location in parameter-
space for modelling human performance. Having 
larger variation within the starting population or 
starting with randomly-generated populations might 
indicate whether the parameters converge towards a 
limited number of optima, and to see whether the 
hand-coded ones can be improved upon. 

Inheritance operators 

A GA might work reasonably well for this problem 
since it could allow for the majority of the traversal 
through the space to be performed by crossover 
recombination, while individual parameters could be 
tweaked slightly by mutation. Once a set of 
parameters for a concept/codelet have stabilised, 
crossover will combine them with other subsets of 
the parameter-vector that work too. 

Fitness function 
There are various fitness functions that could be 
employed: 

1. The simplest would be to set the fitness as the 
proportion of people who gave a particular 
answer to a given letterstrings problem. For 
instance, if 90% of respondents think that for 
the problem: 

abc  :  abd  ::  ijkk  :  ? 

that ijll is the best solution, then that could be 
given a fitness of 0.9. This could be continued 
for each answer that people gave, where some 
very rare answers will have tiny fitness. 
Answers that no human gave will have a fitness 
of zero. There would be no negative fitness. 

2. The above fitness function would work 
moderately well, but it would have the 
unfortunate effect of biasing the system to find 
common solutions, which may not necessarily 
be the most satisfying. As mentioned earlier, 
often people will be shown a solution that 
hadn’t occurred to them, which they will then 
acknowledge to be more satisfying (though less 
obvious) then their own. To compensate for 
this, we could: 

a) Present subjects with a pre-prepared shortlist of 
solutions in multiple-choice format, including 
the less common but more satisfying ones. 
Subjects would be asked to choose the most 
satisfying. There would need to be procedures 
for adding new unconsidered answers to the list 
occasionally, if a subject discovers an unlisted 
solution. 

b) If everyone chooses the same favourite 
solutions, then this may lead to too sparse a 
data set for the second-best and mediocre 
solutions. The search through the high-
dimensional parameter space would require 
fewer data points (i.e. fewer subjects and 
questions) if there are various graded fitness-
values, rather than one correct answer for each 
problem and practically no fitness-values for 
any of the slightly less satisfying answers. This 
could be solved by having subjects rank all of 
the solutions. Some scoring system would have 
to be devised, such that higher-ranked solutions 
are worth rather more than lower-ranked 
solutions when totalling up the frequency with 
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which each solution is chosen (like in Formula 
One Grand Prix championship points). 

3. Alternatively, subjects could be asked to assign 
subjective satisfaction scores (out of 100) to 
solutions, either their own or chosen from a 
shortlist. The fitness here could be calculated 
as: 

F =  1 - |S – (T – 100)| 
 100 
where F is the fitness, S is the average human 
subjective satisfaction score, and T is the 
Copycat temperature2 for that run. When S = T, 
F = 1. For a maximum discrepancy, where S = 
100 and T = 0 (or vice versa), F = 0. We can 
imagine various other fitness functions where 
the fitness might be non-linearly related to the 
difference between S and T, but this illustrates 
the idea. 
This approach might be interesting but 
problematic. This scheme assumes that there is 
a consensus about which analogies people find 
satisfying, since Hofstadter implies this in his 
discussion. However, without having access to 
experimental data, it’s difficult to know how 
large the variance between people’s subjective 
assessments would be, but with a little 
instruction it seems reasonable to hope that this 
could work.  

These fitness functions are just intended to give a 
flavour of how such a system for tweaking the 
parameters to give human-like performance might 
work – there will almost certainly be even better 
ways of calculating the fitness, discoverable through 
experiment and differing from domain to domain 

Given that Mitchell has written a book on GAs, I 
presume that this approach has occurred to their 
group, although I’m not aware of it ever having been 
implemented. 

It is worth noting that if there was some fixed and 
versatile means of calculating the temperature, then 
human subjects would not be needed at all. Instead, 
the system could use its self-calculated temperature 
as the fitness score, and it could run itself many 
times in an effort to find a set of parameters that 
commonly produces low temperatures across its 
training set. Unfortunately, since the temperature is 
in part calculated by the activity of the codelets, it 
cannot be both a dimension in the search space as 
well as the fitness by means of which the search is 
directed. 

                                                             
2 Copycat’s temperature parameter ranges from 0-
100. We need to calculate Copycat’s satisfaction as 
100 – temperature, since a lower Copycat 
temperature signifies a higher satisfaction. 

Remembering and self-watching 
The next important component that needs to be 
considered is Metacat’s capacity for remembering, 
self-watching and self-evaluation. Although I 
criticise these mechanisms as being somewhat 
limited, it is worth noting in Metacat’s defence that 
“the focus in Metacat [was] not on learning to make 
‘better’ analogies, or to make them more 
‘efficiently’, but rather on being able to explain why 
one analogy is judged to be more compelling than 
another” [Marshall, 1999]. 

As described, Metacat produces a trace of every run, 
which is really a high-level abstraction of the events 
that occurred during that run. This makes it possible, 
in principle, to search through past runs to see how 
they might be similar to the current run at a high-
level, even though the actual letterstrings involved 
may be superficially very different. This is what 
Carbonell et al. term a ‘derivational analogy’ 
[Carbonell, 1986]. Unfortunately though, Metacat 
doesn’t seem to quite do this. As far as I can tell, the 
search through stored runs is limited to those which 
involve some of the same letterstrings. This amounts 
to little more than an engineering hack to avoid 
falling into already-experienced traps and to allow 
the reuse of past solutions as a time-saver, although 
it does allow a basic comparison of problems to 
identify which particular steps or themes (i.e. 
instantiated concepts) were present in one and 
missing from the other. 

This approach is restricted in terms of what it can 
do: 

1. It can’t form meta-analogies 

2. It can’t use the parallel terraced scan to 
compare problems 

Over the course of the rest of the paper, I will 
propose extensions to the architecture that would 
hopefully address both these issues, and drastically 
augment the representative power of CuriousCat as 
a result. 

Meta-analogies 

Forming a meta-analogy is not quite as silly as it 
sounds, and I will describe an example to 
demonstrate that people can do this, perhaps even 
with relative ease, and that it might prove a powerful 
cognitive mechanism. I discussed the example of: 

abc  :  abd  ::  xyz  :  ? 

above. I described how the most satisfying solution 
is usually considered to be wyz. Interestingly, we 
can see that if we tweak the original letterstrings 
slightly, the subtle pressures that lead to wyz are no 
longer exerted. Consider: 
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rst  :  rsu   ::   xyz  :  ? 

The same impasse of trying to find the successor to 
‘z’ still applies here, but the appeal of recasting xyz 
as a leftwards predecessorship group is considerably 
reduced, because the symmetry with abc as a 
rightwards successorship group is enhanced by the 
fact that the leftmost letter ‘a’ is the first letter of the 
alphabet, and the rightmost letter ‘z’ is the last letter 
of the alphabet. Because this aspect of the symmetry 
is missing between ‘r’ and ‘z’, wyz is no longer 
considered to be so subtle, satisfying and 
appropriate – indeed, no such single, highly-
satisfying solution exists for the rst version of the 
problem. 

If we were to take another pair of similar analogy 
problems, where one has a deeply satisfying 
solution and the other doesn’t, despite the only 
change being the starting letter of the groups (or 
some other seemingly trivial and superficial 
modification), then I think it would be fair to see 
that this analogy between analogies is a meta-
analogy. Moreover, this is not particularly difficult 
for humans to represent, but Metacat cannot manage 
it. I will give a very quick example [for a 
considerably more detailed exposition of the 
following problems, see Hofstadter, 1995; or 
Mitchell, 1993]: 

abc  :  abd   ::   mrrjjj  :  ? 

ijk  : ijl   ::  mrrjjj  :  ? 

In the case of the abc/mrrjjj problem, the letter-
category successorship group of abc is mapped onto 
a string-length successorship group of mrrjjj – that 
is, a group with first one letter then two letters then 
three letters. Replacing the rightmost group with its 
successor in this case is to replace it with a group 
that is longer by one, i.e. ‘jjjj’. Thus, the most 
satisfying answer to the abc/mrrjjj problem is 
considered to be mrrjjjj (see Fig. 3). Further, note 
that: 

a (1st letter in the alphabet) →  m (length 1) 
b (2nd letter in the alphabet) →  rr (length 2) 
c (3rd letter in the alphabet) →  jjj (length 3) 

In the case of the ijk/mrrjjj problem, mrrjjjj is a less 
satisfying answer, because although ijk contains a 
successor group, ‘i’ is not the first, ‘j’ is not the 
second and ‘k’ is not the third letter of the alphabet. 
Again, this tweak of changing the starting letter 
from ‘a’ to ‘i’ results in a considerably less 
satisfying solution overall, although the themes of 
‘successorship’, ‘sameness’ and ‘length’ are 
common to both problems. The meta-analogy that I 
am proposing is then of this form: 

abc/xyz :  abc/mrrjjj  ::  rst/xyz  :  ijk/mrrjjj 

As an aside, I still get a nosebleed every time I try 
and decide whether people can manage meta-meta-
analogies, and whether this might be useful. 
Suggestions or tissues would be welcome. 

Using the parallel terraced scan to compare 
problems 

Metacat’s means of retrieving past cases appears to 
be very limited. In the terminology of case-based 
reasoning [Leake (1996), Kolodner], its retrieval is 
indexed by the letterstrings and by themes, and not 
at all by the structure of the trace. What if we 
wanted to find a case that had similar themes to the 
one being considered, but used entirely different 
letterstrings, and also involved lots of snags and 
dismantling but eventually found a satisfying 
solution? Metacat couldn’t conduct this search, 
though we might well want it to. After all, what 
could be more useful than to be reminded of a 
superficially different but thematically similar 
problem which was also problematic, but eventually 
proved tractable? The way to do this would be to 
conduct a parallel terraced scan on stored memories 
to tentatively suggest a number of potential 
candidates, and then winnow down to the particular 
cases whose theme and trace structures match most 
deeply. This is similar to what Gentner and 
Markman [1997] refer to as the ‘many are called but 
few are chosen’ principle. 

Working on traces in the same way we work on 
letterstrings 

The lesson from the discussion of meta-analogies is 
that really powerful and abstract thinking requires 
the ability to further chunk relations and 
transformations of already-chunked representations. 
Metacat cannot do this. Its Slipnet is fixed in size 
and repertoire, and the Slipnet nodes are internally 
structureless. It cannot chunk events/themes in the 
trace to compare traces at a higher level of 
description. 

The first major step towards addressing this would 
be to treat the events (such as ‘snag’, ‘drop in 
temperature’) that are stored in the Metacat trace 
just like ‘event-letters’ in a meta-Workspace that we 
might term the ‘Trace-Workspace’, along with an 
accompanying Trace-Slipnet and Trace-Coderack 
too. Events could then be chunked together to form 
event-structures of different types, such as: 

the ‘loop’, when the same snag is experienced 
repeatedly, and no huge drop of temperature 
results (which would indicate that a solution 
had been found) 

the ‘destructive rage’, involving a flurry of 
activity from the dismantler codelets 
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‘frustration’, where the same snag is 
experienced repeatedly, followed by a 
destructive rage 
the ‘paradigm shift’, composed out of some 
snags, subsequent dismantlings, some 
reassembly and a huge drop in temperature 

Of course, many many more will exist, if we want to 
catalogue the various types and combinations of 
events. Interestingly, if we were to try and represent 
these event-structures as letterstrings, they might 
look something like this (using capitals to 
distinguish them from the standard letterstrings): 
 
loop (L): SSS… 
destructive rage (R): DDD… 

frustration (F): e.g. SSSHDDD 
or just: LHR 

paradigm shift (P) e.g. SSSHDDDBC 
or just: FBC 

 
where: 

S – snag 
D – dismantlement 
B – building a structure 
C – large drop in temperature (colder) 
H – large increase in temperature (hotter) 

This simple (and ugly) notation is intended to 
illustrate a few important points. 

Firstly, notice that the loop and destructive rage look 
just like special kinds of sameness-groups. SHD and 
LHR look almost like successorship groups (though 
allowing the same letter to have more than one 
potential successor). D and B, and C and H, are 
opposites. C is strongly associated with the 
rightmost position. If we think of the events as 
letters, then we find that our letterstring concepts 
start to apply. This feels like an exciting, though 
perhaps somewhat obvious-seeming, observation. 
Given this pleasing applicability of letterstrings 
concepts to our Trace-architecture, it make much 
more sense to implement the Trace-Workspace as 
simply an area within the standard Workspace. 
Events would be represented at the same level as 
letterstrings, Trace-concepts would interact with the 
standard Slipnet-concepts in the same semantic 
network (although the two groups would probably 
be fairly sparsely inter-connected), and Copycat 
codelets could operate upon Trace-structures 
(though probably not vice versa). This approach 
could well prove to have powerful advantages, 
especially with regard to the discussion below about 
the generation of concepts (fresh or compound). For 
the moment though, I will continue to talk as though 
the Trace-architecture is kept separate from the 
standard architecture for simplicity of exposition. 

Secondly, we need a better means of writing down a 
schema or template for structures. We want to say 
that a loop has some indefinite number of snags, 
perhaps with other events sandwiched in between – 
in other words, we want to say (S.)*, using the 
powerful notation of regular expressions. In fact, I 
will discuss below how the regular expression 
notation could be utilised as a means of representing 
structures and codelet algorithms across the Copycat 
letterstrings domain. 

Thirdly, we now have a high-level description that 
might constrain our trawl through memory when 
trying to find past problems that usefully resemble 
the current one. Metacat already looks for problems 
that have similar themes to the current one, such as 
‘symmetry’, ‘successorship’, ‘predecessorship’, 
‘first letter of alphabet’ and ‘end of alphabet in the 
case of the abc/xyz problem. It can tell that the 
rst/xyz version lacked the ‘first letter of alphabet’ 
and ‘symmetry’ themes, which is why it’s different. 
Now, perhaps CuriousCat could seek as well for 
past problems that match these thematic 
descriptions, as well as having a paradigm shift (for 
instance) somewhere along the way. It could also 
see whether all the remembered problems similar to 
the rst/xyz version involved frustration without a 
paradigm shift, as a means of deciding that further 
effort on a problem which consistently appeared to 
have no satisfying solution would be fruitless. 

Fourthly, I don’t think it’s entirely a coincidence 
that very emotive words like ‘frustration’ and ‘rage’ 
seem to so aptly describe the trace-patterns 
described here. Being stuck (when there are few 
particularly urgent codelets waiting and few salient 
structures calling for attention), feeling encouraged 
(a series of small drops in temperature) and 
resignation (when a problem is deemed intractable) 
are other emotional states that we can easily imagine 
might fit into this Trace-based language of the 
emotions. Might even humour be partially 
describable as a slightly far-fetched or unusual, 
incongruous or unexpected trace-pattern? As we will 
see later, I also think that curiosity can be seen 
partly in these terms. 

Finally, the incorporation of the Trace-architecture 
would go some way towards allowing CuriousCat to 
see the meta-analogy described above, where we are 
comparing two pairs of analogies, in which a single 
superficial-seeming tweak (to the starting letter) has 
caused one problem to be considerably more 
frustrating than another. 

Seeing such a meta-analogy requires seeing that: 

a) they share some similar themes, but the rst/xyz 
version lacks some 

b) all of the runs on both problems involve lots of 
snags, dismantling and rebuilding, but one 
problem (abc/xyz) occasionally admits a highly 
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satisfying solution while the other (rst/xyz) 
never does 

c) seeing that both these points also hold true of 
the second pair of problems, ijk/mrrjjj and 
ijk/mrrjjjj 

We would be using a parallel terraced scan to do a 
search through the traces themselves, in order to 
appreciate that each pair of problems consists of a 
slight dissimilarity in themes resulting in a drastic 
difference in how satisfying their best solutions are. 
Of course, if we were now to keep a trace of the 
activity on the Trace-Workspace, a ‘Trace-Trace’, 
then it would be possible to search through past 
meta-analogy cases to find similar meta-analogies to 
the one above. 

The architecture I have sketched above does not go 
into enough detail to show exactly what kind of 
trace-concepts, codelets and rule-transformations 
would be needed, nor exactly how the trace and 
theme information for each problem would be 
represented on the Trace-Workspace. But it is hoped 
that it does show how the natural and elegant 
extension of the Metacat architecture of treating 
trace data at the same level and with the same 
mechanisms as the letterstrings could dramatically 
increase the power and abstraction of its analogy-
making. 

Proposing new analogies  
Before going any further, I’m going to make what 
will seem like a digression in order to tie up a thread 
that we will need for our grand knot later. I’m going 
to muse about how CuriousCat might perhaps 
propose its own analogies. 

The simplest way to do this would be to start by 
retrieving a problem from memory, This should 
ideally be one with a satisfying solution, indicating 
that it had been fully understood and that all the 
requisite concepts were available. Then the system 
could simply fire a rule-transfer codelet at the 
corresponding structure in all four strings, and see if 
the analogy still holds. In this way, it could start to 
see what sort of transformations preserve a 
particular analogy, and which destroy or undermine 
it. This subtle comparison of analogies is another 
way of seeing exactly the kind of thing we were 
doing with our discussion of meta-analogy earlier. 

Alternatively, the system could start with a blank 
Workspace, and enter a special mode where builder 
codelets are run on empty space, generating 
placeholder structures without any letters in them. 
Then, we could randomly choose a starting letter 
(biased perhaps towards ‘a’ and ‘z’), and the rest of 
the string should then be deterministically 
generable. Finally, a stochastically chosen rule-
transfer codelet R1 would generate a transformation 

from A to B, another rule-transfer codelet R2 would 
transform from A to C, and then R1 would be run 
again on C to generate D. 

Neither of these methods have been adequately 
fleshed out, but I feel that this cursory outline serves 
to show that proposing new analogies should not be 
an especially difficult problem. Proposing 
interesting analogies based around a theme is, of 
course, a more fiendish business, but one that we’ll 
set aside. 

Expectation 
In his roadmap for Magnificat, Roberts 
[unpublished] introduces the notion of ‘expectation’, 
which I think will prove especially relevant to 
making CuriousCat curious. It’s clear that 
expectation-violation is one of the triggers for 
curiosity – when I’m surprised, I get curious about 
why my predictions were wrong. 

Two parts of the dictionary [NSOED] definition of 
expectation caught my eye: “The state or mental 
attitude of expecting something to happen” and 
“Grounds for expecting; especially prospects of 
inheriting wealth”. Expectation is a state, it has 
intentionality (i.e. you expect something) you have 
grounds for this expectation, and often it’s related to 
the prospect of good things to come. This doesn’t 
help us a great deal. 

Instead, I tried to characterise expectation in a much 
barer form in terms of the Copycat architecture: an 
expectation is a top-down influence that directs 
bottom-up processing to look for something specific 
that would lead to a drop in temperature if found. 
This is by no means a rigid or full definition, and 
I’m sure it could easily mislead us if taken too 
seriously. 

Roberts’ discussion of it is short and tantalising. He 
proposes a “set of codelets operating simultaneously 
on the Workspace, comparing and contrasting, 
building expectations and tearing them down: 
building brand-new structure” and a recall process, 
which compares the Workspace with his version of 
a long-term conceptual memory: 

“[pulling structure] into the Workspace bit by 
bit, as urgency demands. If an instance of recall 
is particularly powerful (it matches structure 
and fulfils expectations well, thus resolving 
questions) then its urgency will cause it to 
proceed rather quickly and completely, but if a 
memory fits a situation only vaguely, then it will 
influence the structure in the Workspace only 
vaguely” 

“An expectation can be seen as a scan in 
progress – it wants to be fulfilled with 
something, be that something additional 
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structure in the Workspace, or structure it 
builds in the Workspace, or structure copied 
from the [LTM]. I expect the expectation to be a 
rather powerful organizing force in 
Magnificat’s operation.” 

I can’t really do much better than that, but I want to 
try and be more specific. If we reify this expectation 
on the Workspace as a kind of placeholder structure 
waiting to be instantiated, we can treat a failure to 
find part of the letterstrings to fit into it as an 
violation of this expectation. In a way, the weak 
bond-structures that get tentatively formed then get 
quickly dismantled when they interfere with a much 
stronger structure, or the bridges between strings 
that don’t quite fit all of the structures on each side 
and get broken down are also expectations that get 
violated. The difference though is that these are 
instantiated structures that get built in response to 
things that are known to exist on the Workspace, 
whereas the placeholder structures are only there 
because the recall process has found past or 
analogous memories that indicate they might be. In 
either case, Copycat response would: 

• raise the temperature (making the whole 
system’s functioning more stochastic) 

• direct processing towards those areas of the 
Workspace to try and resolve the issue 

In other words, it will become curious about them. 
Furthermore, CuriousCat will be able to: 

• look for cases in its memory that might be less 
obviously applicable (i.e. more abstract, 
perhaps) 

• flag the expectation-violation in its trace 

and eventually: 

• try and form a new concept to plug the gap in 
its conceptual repertoire. 

It is to this last vital and difficult process that I now 
turn. 

Forming new concepts and codelets 
The area that I've spent longest with least reward 
considering is the issue of how to automate 
generation of the Slipnet and its associated codelets. 
This is, in its fullest sense, the AI complete problem 
of mechanistically and efficiently generating 
compact hypotheses/categories that capture all and 
only the features that identify a given set of 
examples. If we consider analogy-making to be the 
business of using low level concepts to build high-
level concepts that relate situations, then having the 
right set of low-level concepts for each domain is 
crucial, as is the ability to generate new concepts 
should some unexpected aspect of the situations 

prove to be the essence of the analogy. Indeed, we 
can see all learning in terms of forming concepts 
and applying them to perception in such a way as to 
generate useful behaviour. 

For a concept to exist in the Slipnet, it requires an 
associated family of codelets that do the detection, 
structure-building and -evaluating, dismantling, 
rule-translating etc. In order to generate a new 
concept, the node has to be inserted into the Slipnet, 
assigned a conceptual depth, associated with other 
concepts, and the whole family of codelets has to be 
generated. If we see the structures in the Workspace 
as tokens of concept types in the Slipnet, then 
generating new structures from the Slipnet nodes 
and associated codelets is comparatively trivial. 

Adding a node to the Slipnet can be done in one of 
at least a few ways. It can be generated afresh, 
assigned a default conceptual depth and connected 
weakly to every single other concept. We could then 
use some hill-climbing search again to try and 
search through its parameter space, as before when 
tweaking all of the system’s parameters with the 
GA. If this method were to prove necessary, it 
would be worth thinking about how the system 
could learn after each new problem is presented, 
perhaps by doing its Slipnet tweaking offline. A 
second method would be to copy and paste an 
existing similar concept, mirroring its conceptual 
depth and associations to other concepts. This is 
difficult though, because it requires you to figure out 
which of your current concepts the new, mysterious 
concept is most similar to. Ideally, we would want 
to be able to create compound concepts out of 
combinations of current concepts, or even splice 
together aspects of two concepts. To do this would 
require nesting concept-nodes in the Slipnet. 

Next, we need to generate new accompanying 
codelets. We can see two major groups of codelets: 
those that deal with structures (whether within or 
between strings), and those that take the rule found 
that transforms from A to B, and adapt or apply it to 
C to produce D. 

A  :  B   ::   C  :  D 

Generating new rule-transfer codelets seems a 
particularly intractable problem. Let me try and 
explain why. Let us imagine that we wanted a 
‘mirroring’ concept, that takes a structure and placed 
a copy of the reverse-string to its right. Let us 
imagine that we already have an algorithm for the 
seeker codelets, so they can tell when they’ve found 
one – once we’ve identified a string as instantiating 
a concept, we can also build the concept as a 
structure and we can dismantle it. However, the 
algorithm that applies the mirror-rule to a part of the 
string in A to produce B, and in C to produce D is 
still highly problematic. The only mechanistic 
method I could devise to be sure to eventually 



Greg Detre, ‘Learning and analogy – making Copycat curious’ 

 pg 12 

capture the right rule-transfer algorithm would be to 
do an exhaustive breadth-first search through the 
source code of some Turing-complete language. For 
instance, we could take as our alphabet the handful 
of operations that allow us to define any Turing 
machine (move tape left, read off digit etc.), and 
starting with the strings of length 1, build longer and 
longer strings until we found a Turing machine that 
performed our rule transfer. We have all the 
representational power we could possibly want with 
this method, but it’s wholly useless as a realistic 
implementation solution. The only solution may be 
to devise a domain-specific high-level language for 
each domain of rule-primitives like ‘move letter in 
position X to position Y’, ‘replace letter X with …’ 
etc. Unfortunately, this brings a human back into the 
loop, and so in a sense is admitting defeat. Perhaps 
there is a way to deal with the problem of generating 
rule transfer codelets in terms of the seeking and 
building codelets, which I think are a little easier to 
think about. 

I will propose a possible letterstrings 
implementation for the structure-codelets because 
it’s reasonably neat, and might grease our intuition 
about the kind of complementary language we 
would need for rule-transfer codelets. The proposal 
is to use some variant of regular expressions to 
capture all and only the letter combinations that 
instantiate a particular concept. To give two 
examples, sameness would look something like 
(a*|b*|c*|d*|…) and successorship might look like 
(ab|bc|cd|de|ef|…), where obviously ‘…’ is a 
technical symbol for my laziness. In the case of 
successorship, we would have to build successorship 
groups of length greater than 2 by nesting small 
ones. This would slightly change things, and would 
probably require tweaking the successorship 
parameters to make them easier to build in some 
way in order to be sure that the system notices all of 
a long successorship group. This problem highlights 
the fact that regular expressions are limited in the 
kinds of string combinations that they can represent, 
and so this is not a fully satisfying solution. Of 
course, in the worst case we could restrict the length 
of our strings to some finite number, and then 
enumeration would always be an option. 

In fact, the possibility of huge enumerated lists that 
supposedly capture some concept could actually 
prove a problem. We want to capture the best 
regular expression for a given concept, i.e. the one 
that captures all and only the strings that instantiate 
that concept, using as few enumerations as possible. 
One way of intuitively understanding this ‘minimum 
description length’ (MDL) (Rissanen, 1978) is as 
the optimal, most compact compromise between a 
huge list of examples/exceptions, and a single, very 
lengthy rule that fully captures all the data. Fass and 
Feldman [2002] discuss how they were able to use 
the MDL as an indicator of the subjective difficulty 

of learning some given category. The MDL two-part 
code will be maximally compact when the following 
equation is minimised: 

-log P(D|H) – log P(H) 

where D is the data and H the category hypothesis. 
The MDL is thus intended to capture “all the data, 
including the uninformative noisy data that isn’t 
generated by the models” [Rissanen, 1999]. It might 
be interesting for our purposes to be able to tip the 
scales of the trade-off between model complexity 
and data complexity when representing different 
types of concept. 

An alternative approach would be to ignore regular 
expressions, but still use the idea of evaluating the 
power of a concept-representation by its minimum 
description length. We could instead use some sort 
of substitutional/dictionary encoding [Hankerson et 
al., 2003], where the system tries to choose as 
compact as possible a codebook that losslessly 
encodes all of the strings encountered so far. The 
serious and unavoidable problem with this method is 
that it doesn’t work well with systematic but sparse 
data. So, even if the system had learned the 
successorship concept for the letters it commonly 
encounters but had never seen a letterstring using 
the letter ‘p’ before, none of the learned concepts 
would have ‘p’ in their codebooks, and it would not 
be true at all to say that the system had really 
understood the concept. 

Finally, it’s worth noting that Roberts proposes that 
a suite of generic codelets could be devi sed that 
would prove applicable to various domains. This 
would be great, if possible. His approach is to 
devolve much of the information from the codelet 
algorithms to the long-term conceptual memory that 
he intends to replace the Slipnet and its concept-
nodes. These LTM-nodes will have internal 
structure, and will be composed out of other LTM-
nodes. Though interesting, I don’t see why it would 
be any easier to build up the internal structure of an 
LTM-node than it would be to have codelet 
algorithms with internal structure, which is one way 
to see the above proposals. In short, I don’t know 
how his proposal makes the business of generating 
arbitrary and complex new concepts easier. My only 
thought is that if we can find a powerful enough 
representation for the codelet algorithms in the 
letterstrings domain, we might try and encode other 
domains in terms of letterstrings. Unfortunately, I 
don’t think this would work so well in domains with 
continuous rather than discrete perceptual atoms 
(e.g. some real-number-strings version of 
Seekwhence – see Hofstadter, 1995, ch 1). 

The two central problems of forming new concepts 
are: 

• how to tell when a new concept is needed 
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• how to tell what it should do 

I have tried to address the second point, but the first 
remains. How do you realise when you have a gap 
in your knowledge that would be useful to fill in? In 
fact, we answered this question earlier, when we 
discussed expectation-violation. Forming a new 
concept was the last in a chain of increasingly 
drastic options to be undertaken in the face of a 
series of stubborn expectation violations. We can 
see almost all of the discussion so far of architecture 
extensions as being instrumental in helping the 
system tell when a new concept is needed and what 
it should do. 

Let us imagine that CuriousCat has been presented 
with a number of problems, for which it was unable 
to find any solutions whatsoever (or perhaps very 
unsatisfying ones) for some small proportion. Every 
time it encounters another unsolvable problem, it 
flags the expectation-violations and failure in its 
trace, and tries rebuilding in different ways, and 
starts various trawls through its memory based on 
redescriptions of the current situation. It decides to 
try looking for some concept that will help with a 
number of these problems, and so uses the 
unsolvable ones to focus its training set. It tries 
proposing new analogies based around these 
problematic cases, and tries to see if it can solve 
them itself. If it can, then they might provide clues 
about how to solve the problematic ones. Or, it 
might indicate that something about the 
transformations added to generate the new analogies 
affected the missing concept in some way, and 
rendered it either unnecessary or tractable. Noticing 
which themes are added and missing in all of these 
cases, should provide a good indication of which 
concepts are similar to the prospective concept. 

Of course, the previous discussion assumes that 
there is only one new concept waiting to be 
discovered. If there are two or more, the new 
concept will end up as some sort of amalgam of 
them all. To resolve this, we need further 
mechanisms for splitting concepts into two. For this, 
we could use the same architecture-extensions to 
pay attention to the frequency with which a pair of 
concepts are fighting to be instantiated 
simultaneously as a structure on the same letters. 
This covariance might indicate an overlap. 

Now, I want to return to my early definition of a 
curious machine as one that interrogates its 
environment. CuriousCat can be seen as engaging in 
an interative dialogue with the environment about 
what is required of a new concept. When it starts to 
feel that a new concept is necessary, CuriousCat can 
probe the boundaries and situations in which the 
concept applies by proposing meta-analogies, i.e. by 
asking ‘is this case like this case’? If we allow it a 
reward signal for the strength of the meta-analogies, 
the hope is that could learn a great deal in a short 

time by constraining the space in which the new 
concept applies. 

Applications 
I had very much hoped to discuss how CuriousCat 
would deal with being ported to two new domains 
(chess, and something similar to Evans’ original 
geometric puzzles), and how well I thought it would 
be able to manage without extensive human hand-
holding, but unfortunately time and space preclude 
this. 

Conclusions 

Mapping and transformation 
As may have become apparent, I have focused far 
more on the problem of mapping than 
transformation. For instance, in the discussion on 
traces and meta-analogies, I proposed a means of 
retrieving past situations that might be related in an 
abstract way, but I hardly mentioned how we might 
use this knowledge, other than to occasionally 
concluding when to give up on clearly fruitless 
problems. Having found a past case that’s analogous 
to this one, we want to see how the solution found 
there guides the search for a solution to the current 
problem. For instance, having found the meta-
analogy between abc/xyz//rst/xyz and 
abc/mrrjjj//ijk/mrrjjj, we want to draw some 
conclusions about the kinds of tweaks that do and 
don’t affect how satisfying a problem’s solution is. 
In the terminology of case-based reasoning, I have 
focused upon the case-based remembering, rather 
than case-based adaptation. 

This is partly because one of my primary 
motivations was to think about how a chess program 
could aid a human player by presenting analogous 
examples from past games, so that the human player 
could see how they unfolded and adapt his game 
plan accordingly. The responsibility for modifying 
the retrieved cases lay squarely with the human, 
since this is a somewhat different and very difficult 
problem far beyond the scope of this discussion. 

To some degree, this is also because the lessons 
learned from Copycat about fluid concepts scale 
well, while the Metacat architecture is less rich as a 
source of ideas about traces, cases and episodic 
memory. To some degree, I think the architecture 
extensions proposed here might support this further 
task of adaptation. However, much more work is 
needed. 
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Relations to a richer definition of 
curiosity 
At the beginning, I gave a rich characterisation of 
curiosity along the following lines: 

Being curious is about seeking knowledge that 
you don’t even know for sure that you’ll need. 
It’s proactive, requires a learning system and 
cognitive architecture complex enough to 
subserve goal-directed and flexible behaviour, 
recognition of novelty, and some degree of 
(self-)evaluation. The more complex and 
diverse the goals, behaviours and 
representations, the more complex the curiosity 
manifested. There can be different types of 
curiosity, triggered under different 
circumstances, suited to different domains, 
goals or learning styles. 

I don’t believe that CuriousCat would be ‘curious’ 
in a truly rich sense, but I felt happy with that 
characterisation of curiosity when I gave it, and I do 
feel that the architecture described goes a long way 
towards it in at least two-thirds of the ways listed. 
This also serves to make apparent the folly of 
seeking a single ‘curiosity’ module, given how 
many different functions, often originally designed 
with different goals in mind, were eventually drafted 
in as integral to the business of being curious. 
Curiosity just results from the system’s methods of 
learning proactively. 
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Figures 

Figure 1 – Copycat Slipnet 
see attached file – ‘copycat slipnet organisation.pdf’ 

Figure 2 – Copycat Workspace for the abc/xyz problem 

 

Figure 3 – Copycat workspace on the abc/mrrjjj problem 

 

 


