
Learning by analogy – making Copycat curious
Greg Detre

Harvard University, Cambridge, MA
email: greg@gregdetre.co.uk

Abstract: The aim of this paper is to consider a future implementation of a curious machine that learns through analogy-
making. I will describe what I mean by curiosity, and consider how the state of the art in computational analogy-making
provides a good starting-point for the endeavour by considering how one particular such architecture, Copycat, might be
extended. I will focus on how a future system might begin to self-organise and learn, reducing the reliance on human hand-
coding of parameters, and making steps towards becoming genuinely domain-general, and how such a system could be
considered to be being curious.

Keywords : curiosity, analogy-making, learning, concepts, case-based reasoning, derivational analogies

A year spent in artificial intelligence is enough to
make one believe in God – Anon.

Introduction
This paper was originally written for a seminar class
at the MIT Media Lab, entitled ‘Curious machines’.
The aim was to explore what curiosity is, its role in
intelligence and how curiosity might be
implemented in future AI systems, asking questions
like ‘How can we build machines that are as curious
learners as natural systems? How can we build
systems that have a deeper understanding of the
learning process beyond turning the statistical crank
of a learning algorithm?’ – see
http://courses.media.mit.edu/2003spring/mas963.

I’m going to start by outlining some of the features
that a recent discussion highlighted as being
characteristics of curious behaviour, before
proposing a pithy and restricted characterisation of
what it is to be curious that will guide the discussion
in the rest of the paper. The intention is to discuss
what would be necessary to make Hofstadter and
Mitchell’s Copycat analogy-making model be a
curious learner.

Curiosity
Being curious is about seeking knowledge that you
don’t even know for sure that you’ll ever need.
Curiosity in its fullest sense presumably requires a
learning system and cognitive architecture complex
enough to subserve goal-directed and flexible
behaviour, recognition of novelty, and some degree
of (self-)evaluation. Being curious is proactive and
explorative, rather than a reaction to immediate
need. The more complex and diverse the goals,
behaviours and representations, the more complex
the curiosity manifested. There can be different
types of curiosity, triggered under different
circumstances, suited to different domains, goals or

learning styles. It also seems intuitively unlikely that
curiosity has a unitary substrate, but this is possibly
contentious and tangential to the points that I want
to make next, so I won’t discuss it.

In its barest form, a curious machine is one that
interrogates its environment. ‘Interrogation’ has the
requisite sense of a directed enquiry about things
that you want to know from something/someone that
has the answers, out of which an internal
understanding is built. Interrogations are about
things that you don't know about now, and don't
necessarily need to know, but may well come in
useful in the grand scheme of things. There's also a
sense of a dialogue, in which you ask questions,
narrow down the domain of enquiry, realise where
you’re ignorant, ask more questions about the new
things you don't understand, and accommodate this
new knowledge.

I hope that this will prove an illustrative rather than
misleading way of starting to think about the
business of being curious. It prompts certain
observations. Importantly, you need to know some
things already in order to know what to ask and to
make sense of the answers. Indeed, what you know
already will make a big difference to the kinds of
questions it occurs to you to frame, and the way you
interpret the answers. The order in which you are
told things can drastically affect how easy it is to
draw conclusions from them. It helps you and your
interlocutor gauge your understanding to be tested.
If you ask the right questions, you can draw
conclusions that may have general applicability very
quickly. A popular way of answering a question is
to provide examples and counter-examples.
Examples may make you see things in a new light,
and counter-examples help you map out the
boundaries within which new knowledge applies.
Figuring out which questions to ask, especially
figuring out when something crucial is missing from
your understanding, is hard but important. For this
reason, an unexpected answer can be very
instructive. If you find it difficult to understand

Greg Detre, ‘Learning and analogy – making Copycat curious’

 pg 2

something, good teachers will explain it to you by
saying it in another way, or showing how it’s similar
(or different) to something you already understand,
or composed out of other things. You need to know
when to stop asking questions as well as when more
questions are needed. I have framed this idea of a
question-and-answer interrogation in a very
linguistic light, but it needn’t be at all.

Analogy-making
There are lots of ways to think about things and to
learn to deal with new problems and concepts.
Minsky [forthcoming, chapter 7] details a number of
them, of which I’ve reproduced a modified sample:

breaking it down into smaller parts

solving a simplified version, then generalising,
or just dealing with the extra complexities and
exceptions one by one
seeing how it’s similar to something you
already know about, or reformulating the
problem in a different domain
describing it in a more abstract way (e.g. formal
logic)
meta-reflection – considering what makes a
problem hard and where you’re going wrong
considering whether the problem is really worth
solving at all
extensively searching through possibilities

imagining how someone you respect would
tackle the problem

If we could build a system that was able to do all of
these things flexibly and in different domains, we’d
be well on our way towards a very healthy IPO. My
focus here will be on the top two-thirds of this list,
which I consider to fall loosely under the general
idea of ‘learning by analogy’. This very general
suite of approaches has been termed computational
analogy-making [French], case-based reasoning
[Leake], remembering and adapting [Kolodner],
high-level perception [Chalmers, French and
Hofstadter], and structure mapping theory
[Gentner], amongst other names.

I consider learning by analogy to be amongst the
most central and powerful representational and
learning tactics we employ. In a perverse way, this
is evidenced by the effortlessness and invisibility of
the processes that see these similarities and
analogies. We constantly think of concepts in terms
of other concepts, ignoring what is irrelevant to the
comparison, subconsciously but effortlessly
alighting on what is salient. We jump up and down
levels, into different modalities and across mental
realms. Human language’s concise expressiveness
rests in part on words being reused for new
purposes, enriching their associations and coopting

their ‘inferential machinery’ [Minsky, Jokes and the
cognitive unconscious]. This has been noted before,
most eloquently by Hofstadter [1979, 1995; also
quoted in Marshall, 1999].

Higher-level perception and Structure Mapping
Theory

I intend to take Hofstadter and the FARG’s
implementations as my starting point for discussion
of a future implementation of a curious machine that
learns through analogy-making, but before going
any further, we need to briefly survey the main
debate in the computational analogy-making
literature, which is best characterised by a
comparison between the ‘Structure Mapping
Theory’ and ‘Higher Level Perception’ camps
[French, 2002].

According to SMT, an analogy is an ‘alignment of
relational structure’ [Gentner & Markman, 1997].
Here, the relations are the internal links that
determine the composition and arrangement of the
structure, which are contrasted with the ‘attributes’
and ‘object descriptions’ which determine ‘mere-
appearance matches’. Morrison & Dietrich [1995]
consider that Gentner et al.’s aim is to present a
model of the comprehension (rather than the
discovery) of analogy, where for a given structure,
the system is able to retrieve a stored match for
which the mapping of relations is closest. Their
implementation, SME, starts by seeing many local
matches out of which a consistent large-scale
structure coalesces, and appears to mirror certain
salient experimental results with human subjects.

In contrast, Hofstadter and the FARG [Hofstadter,
1995] want to cast analogy-making as playing a
much more central and less specialised role –
“analogy-making is going on constantly in the
background of the mind, helping to shape our
perceptions of everyday situations. In our view,
analogy is not separate from perception: analogy-
making itself is a perceptual process” [Chalmers,
French and Hofstadter, 1991].

This needs a little explaining. The central point is
that the process of building up a compound
representation of a situation or scenario cannot be
independent of the process of seeing a mapping
between scenarios. Both of these processes are
intertwined as ‘high-level perception’. High-level
perception begins at that level of processing where
concepts begin to play an important role. This is
pretty nebulous, but that’s fine. We can see concepts
as being abstract or concrete, simple or complex –
any aggregation, processing or filtering of raw
sensory data can be seen as conceptualising.

The two problems in high-level perception are the
problems of relevance and of organisation:

Greg Detre, ‘Learning and analogy – making Copycat curious’

 pg 3

1. relevance – how do you determine what’s
salient within the morass of low-level data,
and pick it out to pass on to higher levels of
processing?

2. organisation – how do you organise all of
that (multi-modal) data together, i.e. how
do you determine what to clump together
and what’s related to what?

These two problems are critical for SMT, since if
the wrong aspects of the perceptual data are chosen,
or if they are organised poorly, no analogies will
ever be found. Yet this is out of SME’s control,
because it artificially separates the processes of
human hand-coding of perception and its own
mapping. The same criticism Hofstadter made of
Bacon [Langley et al., 1987] could be made of
SME, namely that it “was fed precisely the data
required to derive the [Kepler’s] law” [Hofstadter,
1995].

In other words, analogy-making requires
representations to be built dynamically, extracting,
organising and reorganising what’s salient about the
current situation based on the current context, goals,
beliefs, and at the same time as trying to perform
tentative mappings with past situations and
knowledge. To comprehend an analogy is to
discover it – you can’t do the former in any rich,
flexible or meaningful way without doing the latter.

Copycat

Copycat is intended to illustrate how the various
strata of such a view of analogy-making as high-
level perception could operate and interact,
involving:

• the gradual building-up of representations
• the role of top-down and contextual influences

• the integration of perception and mapping

• the exploration of many possible paths towards
a representation

• the radical restructuring of perceptions, when
necessary

Copycat considers analogies like the following:

abc : abd :: ijkk : ?

Most people would prefer ijll, but would recognise
the validity of ijkl, ijkd, ijdd or abd, to name just a
few. Copycat’s architecture is designed to allow top-
down and bottom-up influences to interact,
constraining a search1 through the space of possible

1 Although Hofstadter avoids the word ‘search’ in
the context of thinking because of the connotations
of formal, efficient techniques for searching well-
defined spaces, that he rejects [Kelly, 1995].

mappings between letter-strings, and so producing a
mapping to a new string, as well as providing a
rating of the system's ‘happiness’ with its solution.
This could be seen in three main (concurrent) tasks:
1. build a representations of the three starting

strings
2. describe how to map from the source to target

strings
3. apply the same transformation to the third string

There are a number of things about the Copycat
architecture that are special or interesting. It’s split
into three parts:

Slipnet

This is the high-level, long-term conceptual memory
of Copycat (see Fig. 1), represented as a semantic
network. It contains concepts like ‘successorship’,
‘rightmost’, ‘opposition’ and ‘symmetry’, each of
which are linked together by proximity (i.e.
association) weights. Each concept has a pre-
assigned ‘conceptual depth’ and activation. The
conceptual depth is a sort of aesthetic, subjective,
hand-coded value intended to capture how abstract
or interesting a concept is. The activation reflects
the extent to which the concept appears to be
relevant to the current problem, and how activated
nearby/associated concepts are.

Coderack

The Coderack is the repository for the codelets –
these are small, specific pieces of code that carry out
low-level tasks. Some codelets look for particular
patterns, or evidence that a given concept may be
playing a role somewhere, while others build bonds
and groups within a string, or
bridges/correspondences between strings, and
finally some break these structures back down again
when Copycat seems to be hitting an impasse.

Each codelet is selected probabilistically from the
Coderack according to its ‘urgency’, which is partly
hand-coded, and partly a function of the current
activations and deformations in the Slipnet, and
partly affected by the preceding codelets which
triggered it.

Workspace

This is a sort of scratchpad on which the codelets
operate, containing the strings, and the structures
built up between them. The strength of a structure is
a function of the activation and conceptual depth of
the related concept (e.g. sameness, successorship),
how long it has lasted, whether it conflicts with
other structures, amongst other factors. Structures
can be nested. I find it useful to think of the
Workspace structures as tokens of Slipnet concept-
types.

Greg Detre, ‘Learning and analogy – making Copycat curious’

 pg 4

Copycat is great at interacting top-down and
bottom-up, being mostly sensible but not myopically
systematic, and building structures so that they
‘flex’ in the right places. Hofstadter terms the
system’s overall approach a parallel terraced scan,
which can be understood in search terms as
exploring the most promising avenues
proportionally/probabilistically more. Where the
agenda of a depth-first search is a stack, and
breadth-first uses a queue to decide the next node,
the parallel terraced scan uses a stochastic priority-
queue of codelets, ordered by their ‘urgency’. These
priorities are based on the bi-directional interactions
between the top-down associations and concept
activity-values in the Slipnet and the happiness and
salience of the bottom-up structures built by the
codelets.

Finally, the temperature is a measure of the richness
and internal coherence of the structures that have
been built up so far in the Workspace. When these
structures are weak, employing conceptually
shallow concepts, and when large parts of the strings
haven’t been accounted for or don’t fit, the
temperature is high, making all the processes more
stochastic, and increasing the urgency of dismantler
codelets. As the system builds more coherent
structures, the temperature drops, and the decisions
become more deterministic and less destructive. The
temperature can then be seen as a kind of measure of
the system’s happiness with the solution it has
found. As a result, Copycat may find a less
satisfying analogy quite often (it has no memory of
past solutions), but occasionally stumble across a
highly satisfying solution, mirroring results with
human experimental subjects.

An example should suffice to convey the difference
between more common and more satisfying
solutions. If faced with the problem:

abc : abd :: xyz : ?

most people’s first choice would probably be xya,
since we want to find a successor to the rightmost
letter and so we loop back through the alphabet.
However, a circular link from ‘z’ to ‘a’ has been
deliberately excluded from Copycat’s conceptual
model, which forces people to think harder.

As a result, Copycat frequently builds up a set of
structures on the Workspace that lead it to seek the
successor of the rightmost letter, only to hit an
‘impasse’ (see Fig. 2). This happens often because
Copycat’s parameters are set so that it sees
successorship groups more readily than
predecessorship groups, which is intended to reflect
human (especially Western) preferences for
incrementing over decrementing and left-to-right
over right-to-left.

As a result, the solutions it comes up most
commonly include xyz, xyy, xyd and abd. However,

there is a solution that many people find very
satisfying once they see it, though few people notice
it immediately, which is wyz. This requires a mini
paradigm shift. The impasse occurs because abc is
described as a group of successors heading
rightwards from the first letter of the alphabet, and
the most obvious mapping is to see xyz
correspondingly as a group of successors heading
rightwards ending on the last letter of the alphabet.
In order to scale the impasse, xyz has to be
reconceptualised as a group of predecessors heading
leftwards from the last letter of the alphabet. This is
exactly symmetrical to the description of abc,
prompting a reversal of the rule from abc to abd of
‘replace the rightmost letter with its successor’ to
‘replace the leftmost letter with its predecessor’.
When I first saw this, I certainly felt that the choice
of the seemingly uninteresting letterstrings
microdomain as allowing for complex,
psychologically plausible constructions was
vindicated. Copycat finds the less satisfying
solutions more often, but when it does find the wyz
solution its satisfaction with the solution (as
measured by a lower temperature) is much higher
[See Hofstadter, 1995; and Mitchell, 1993 for a
plethora of further letterstring puzzles that Copycat
can solve].

Metacat

Metacat [Marshall, 1999] is the second generation of
Copycat, differing in a couple of important respects.

Firstly, Metacat is able to produce multiple answers
for a given problem in a single run, reporting each
and carrying on. In contrast, Copycat would stop
each run every time it found an answer, starting each
run afresh and blissfully ignorant of past successes
and failures.

Secondly and crucially, Metacat builds a ‘trace’ of
its operations as it goes along, capturing both an
abstraction of the process of discovery as well as the
nitty-gritty details of the state of the whole Copycat
system. These extra levels of self-watching and
remembering have a number of advantages. Metacat
is able to avoid getting trapped in a loop or freezing
when faced by an impasse that it has encountered
before. In contrast, when Copycat tries to find the
successor of ‘z’ and fails, the temperature slowly
rises, certain structures that led to this dead end
become more likely to be dismantled, and more
often than not it retraces some of its steps only to try
the very same tactic in a few iterations’ time.
Furthermore, by maintaining a trace of its activity as
well as details of past runs, Metacat is able to use
past experience to avoid this folly, and head towards
a known solution or try new avenues. The most
important concepts employed in a given solution are
termed ‘themes’ – by storing the themes along with
the salient events and steps in a given run, Metacat

Greg Detre, ‘Learning and analogy – making Copycat curious’

 pg 5

is trying to capture the essential features of a given
situation, allowing limited comparison between
different solutions to the same problem.

Magnificat

Very recently, I discovered an essay online
discussing vague plans for the latest implementation
in the Copycat family, named Magnificat [Roberts,
unpublished]. Pleasingly, many of the aims and
high-level ideas raised dovetail with those discussed
here, though it also contains a number of
architectural innovations that deserve greater
consideration than I have room for. I will consider
them in passing if I feel they can especially help.

Lessons from the Copycat family

I consider Hofstadter’s work on analogy-making to
be the richest source of ideas and the most
impressive implementation around at the moment.
Although he focuses on micro-domains, and makes
no claims to have modelled the thought processes of
great scientists from the past [cf Langley, 1987],
there is a sense that the kinds of analogies that
Copycat is able to see involve a directed and really
quite human-like exploration of a far greater space.

One of the most important lessons I want to take
away from Hofstadter et al.’s work is the need to
build up a representation of the situation, with both
top-down and bottom-up influencing each other, in
order to be able to choose what’s relevant for the
current analogy. The flipside of this is that concepts
become rich and meaningful by virtue of the way in
which they can be decomposed and combined into,
and influence other concepts. I’m also conscious of
the adaptability of Copycat’s basic architecture – at
least in theory, with different concepts, codelets and
their associated parameters, Copycat could be
adapted to more or less any domain. Furthermore,
Hofstadter claims that the parallel terraced scan is
fairly resistant to problems of combinatorial
explosion.

Limitations of the Copycat family

However, even within the letterstrings domain,
Copycat/Metacat is limited. There are concepts that
we might expect it to have that it lacks. For instance,
Copycat can’t deal with sequences that aren’t
successors or predecessors, e.g. sequences that skip
every other letter. Importantly, it can’t deal with
mappings involving more than one letter change,
though apparently Metacat improves upon this. It
can’t deal with certain types of noise, nor represent
interleaved sequences, e.g. abacadae. It can’t devise
analogies of its own, nor learn from counter-
examples. Finally, Metacat’s ability to see compare
analogies is limited, as is its ability to search for past
cases.

Some of these issues are quibbles, but some mask
deep-seated limitations of the architecture. After all,
Hofstadter explicitly states that he is not especially
considering the issues of learning or self-
organisation. Unfortunately, the Copycat system
relies heavily on a large number of hand-coded
parameter values that determine the various
probabilities and relations between the system's
different processes and the structures they build. The
system's impressively human-like performance on a
number of abstract, difficult problems very rich in
internal structure (despite the limited domain)
depends upon these preset, subjective, tweaked
values, as well as a number of implicit judicial
decisions with regard to the kinds of concepts that
such a system should look for. Indeed, the choice of
concepts and codelets was guided by five difficult
sample problems (including the xyz one detailed
above) that they wanted Copycat to be able to solve.
Porting Copycat to a different domain, or expanding
the letterstrings domain, while maintaining the
delicate balance between the current concepts,
would always be a labyrinthine labour-intensive
task.

Building on Copycat
I’m not going to try and tackle all of these
limitations. The goal of the discussion in this paper
is to consider how a curious, learning analogy-
making system might be incorporated as a
component in a much larger and more domain-
general learning system. Unfortunately though, the
problem of getting Copycat to learn or self-organise
to adapt itself to new domains is a deep one. I’m
going to identify a number of different levels at
which some sort of learning or self-organising
mechanism (or set of mechanisms) would be
necessary, and then discuss how easy it would be to
build a system that could learn to operate in
different and potentially more complex domains
than the letterstrings based on some of these ideas.

In the grand tradition of the Fluid Analogies
Research Group of giving their projects capricious
and unnecessarily clever names, I will refer to this
sketch of a curious, self-organising, domain-general
system that learns by making analogies as
‘CuriousCat’.

Searching through the parameter
space
If we were to take the results from even a small
sample of human subjects on a suite of letterstring
problems, we could use reinforcement learning
[Sutton and Barto, 2002] or genetic algorithms (GA)
[Holland 1975; Koza 1997] to search the space of
parameters to find the combinations that match up

Greg Detre, ‘Learning and analogy – making Copycat curious’

 pg 6

with the experimental data. Indeed, Hofstadter et al.
appear to have the experimental data to do this. In
their discussion of Copycat’s success, they
frequently compare results from multiple Copycat
runs with answers given by people to the same
questions.

I will sketch a genetic algorithm that could search
through the parameter space to find a vector of
parameters for its pre-coded concepts and codelets
that would lead it to find solutions more often that
have a lower temperature and that match human
choices.

Genotype

The genotype of the GA will be a vector of the
parameters being tweaked. Parameters relating to
families of codelets and related areas of the
architecture would be located next to each other.
Approximate upper and lower bounds could be set
for some parameters, to keep them in line with
human intuitions, and to try and preclude the system
from choosing some peculiar combination that
appears to work for the particular training set, but
performs poorly on novel data.

The full list of parameters would be huge, since
Copycat employs a huge array of fudges in all of its
computations, especially the codelets, but a partial
list should at least include the following:
• the association strengths between concepts in

the Slipnet
• conceptual depths

• codelet urgencies

• workspace structure happiness and salience
values

• the algorithm for calculating the temperature
based on all of the above

Phenotype

The phenotype is a version of Copycat running with
the parameters in its genotype. Ideally, because
Copycat’s processing is highly stochastic, it should
be run many times on each problem.

Population

The easiest population to start with would centre
around the set of parameters that the published
version of Copycat employs, since these parameters
are pretty close to the optimal location in parameter-
space for modelling human performance. Having
larger variation within the starting population or
starting with randomly-generated populations might
indicate whether the parameters converge towards a
limited number of optima, and to see whether the
hand-coded ones can be improved upon.

Inheritance operators

A GA might work reasonably well for this problem
since it could allow for the majority of the traversal
through the space to be performed by crossover
recombination, while individual parameters could be
tweaked slightly by mutation. Once a set of
parameters for a concept/codelet have stabilised,
crossover will combine them with other subsets of
the parameter-vector that work too.

Fitness function
There are various fitness functions that could be
employed:

1. The simplest would be to set the fitness as the
proportion of people who gave a particular
answer to a given letterstrings problem. For
instance, if 90% of respondents think that for
the problem:

abc : abd :: ijkk : ?

that ijll is the best solution, then that could be
given a fitness of 0.9. This could be continued
for each answer that people gave, where some
very rare answers will have tiny fitness.
Answers that no human gave will have a fitness
of zero. There would be no negative fitness.

2. The above fitness function would work
moderately well, but it would have the
unfortunate effect of biasing the system to find
common solutions, which may not necessarily
be the most satisfying. As mentioned earlier,
often people will be shown a solution that
hadn’t occurred to them, which they will then
acknowledge to be more satisfying (though less
obvious) then their own. To compensate for
this, we could:

a) Present subjects with a pre-prepared shortlist of
solutions in multiple-choice format, including
the less common but more satisfying ones.
Subjects would be asked to choose the most
satisfying. There would need to be procedures
for adding new unconsidered answers to the list
occasionally, if a subject discovers an unlisted
solution.

b) If everyone chooses the same favourite
solutions, then this may lead to too sparse a
data set for the second-best and mediocre
solutions. The search through the high-
dimensional parameter space would require
fewer data points (i.e. fewer subjects and
questions) if there are various graded fitness-
values, rather than one correct answer for each
problem and practically no fitness-values for
any of the slightly less satisfying answers. This
could be solved by having subjects rank all of
the solutions. Some scoring system would have
to be devised, such that higher-ranked solutions
are worth rather more than lower-ranked
solutions when totalling up the frequency with

Greg Detre, ‘Learning and analogy – making Copycat curious’

 pg 7

which each solution is chosen (like in Formula
One Grand Prix championship points).

3. Alternatively, subjects could be asked to assign
subjective satisfaction scores (out of 100) to
solutions, either their own or chosen from a
shortlist. The fitness here could be calculated
as:

F = 1 - |S – (T – 100)|
 100
where F is the fitness, S is the average human
subjective satisfaction score, and T is the
Copycat temperature2 for that run. When S = T,
F = 1. For a maximum discrepancy, where S =
100 and T = 0 (or vice versa), F = 0. We can
imagine various other fitness functions where
the fitness might be non-linearly related to the
difference between S and T, but this illustrates
the idea.
This approach might be interesting but
problematic. This scheme assumes that there is
a consensus about which analogies people find
satisfying, since Hofstadter implies this in his
discussion. However, without having access to
experimental data, it’s difficult to know how
large the variance between people’s subjective
assessments would be, but with a little
instruction it seems reasonable to hope that this
could work.

These fitness functions are just intended to give a
flavour of how such a system for tweaking the
parameters to give human-like performance might
work – there will almost certainly be even better
ways of calculating the fitness, discoverable through
experiment and differing from domain to domain

Given that Mitchell has written a book on GAs, I
presume that this approach has occurred to their
group, although I’m not aware of it ever having been
implemented.

It is worth noting that if there was some fixed and
versatile means of calculating the temperature, then
human subjects would not be needed at all. Instead,
the system could use its self-calculated temperature
as the fitness score, and it could run itself many
times in an effort to find a set of parameters that
commonly produces low temperatures across its
training set. Unfortunately, since the temperature is
in part calculated by the activity of the codelets, it
cannot be both a dimension in the search space as
well as the fitness by means of which the search is
directed.

2 Copycat’s temperature parameter ranges from 0-
100. We need to calculate Copycat’s satisfaction as
100 – temperature, since a lower Copycat
temperature signifies a higher satisfaction.

Remembering and self-watching
The next important component that needs to be
considered is Metacat’s capacity for remembering,
self-watching and self-evaluation. Although I
criticise these mechanisms as being somewhat
limited, it is worth noting in Metacat’s defence that
“the focus in Metacat [was] not on learning to make
‘better’ analogies, or to make them more
‘efficiently’, but rather on being able to explain why
one analogy is judged to be more compelling than
another” [Marshall, 1999].

As described, Metacat produces a trace of every run,
which is really a high-level abstraction of the events
that occurred during that run. This makes it possible,
in principle, to search through past runs to see how
they might be similar to the current run at a high-
level, even though the actual letterstrings involved
may be superficially very different. This is what
Carbonell et al. term a ‘derivational analogy’
[Carbonell, 1986]. Unfortunately though, Metacat
doesn’t seem to quite do this. As far as I can tell, the
search through stored runs is limited to those which
involve some of the same letterstrings. This amounts
to little more than an engineering hack to avoid
falling into already-experienced traps and to allow
the reuse of past solutions as a time-saver, although
it does allow a basic comparison of problems to
identify which particular steps or themes (i.e.
instantiated concepts) were present in one and
missing from the other.

This approach is restricted in terms of what it can
do:

1. It can’t form meta-analogies

2. It can’t use the parallel terraced scan to
compare problems

Over the course of the rest of the paper, I will
propose extensions to the architecture that would
hopefully address both these issues, and drastically
augment the representative power of CuriousCat as
a result.

Meta-analogies

Forming a meta-analogy is not quite as silly as it
sounds, and I will describe an example to
demonstrate that people can do this, perhaps even
with relative ease, and that it might prove a powerful
cognitive mechanism. I discussed the example of:

abc : abd :: xyz : ?

above. I described how the most satisfying solution
is usually considered to be wyz. Interestingly, we
can see that if we tweak the original letterstrings
slightly, the subtle pressures that lead to wyz are no
longer exerted. Consider:

Greg Detre, ‘Learning and analogy – making Copycat curious’

 pg 8

rst : rsu :: xyz : ?

The same impasse of trying to find the successor to
‘z’ still applies here, but the appeal of recasting xyz
as a leftwards predecessorship group is considerably
reduced, because the symmetry with abc as a
rightwards successorship group is enhanced by the
fact that the leftmost letter ‘a’ is the first letter of the
alphabet, and the rightmost letter ‘z’ is the last letter
of the alphabet. Because this aspect of the symmetry
is missing between ‘r’ and ‘z’, wyz is no longer
considered to be so subtle, satisfying and
appropriate – indeed, no such single, highly-
satisfying solution exists for the rst version of the
problem.

If we were to take another pair of similar analogy
problems, where one has a deeply satisfying
solution and the other doesn’t, despite the only
change being the starting letter of the groups (or
some other seemingly trivial and superficial
modification), then I think it would be fair to see
that this analogy between analogies is a meta-
analogy. Moreover, this is not particularly difficult
for humans to represent, but Metacat cannot manage
it. I will give a very quick example [for a
considerably more detailed exposition of the
following problems, see Hofstadter, 1995; or
Mitchell, 1993]:

abc : abd :: mrrjjj : ?

ijk : ijl :: mrrjjj : ?

In the case of the abc/mrrjjj problem, the letter-
category successorship group of abc is mapped onto
a string-length successorship group of mrrjjj – that
is, a group with first one letter then two letters then
three letters. Replacing the rightmost group with its
successor in this case is to replace it with a group
that is longer by one, i.e. ‘jjjj’. Thus, the most
satisfying answer to the abc/mrrjjj problem is
considered to be mrrjjjj (see Fig. 3). Further, note
that:

a (1st letter in the alphabet) → m (length 1)
b (2nd letter in the alphabet) → rr (length 2)
c (3rd letter in the alphabet) → jjj (length 3)

In the case of the ijk/mrrjjj problem, mrrjjjj is a less
satisfying answer, because although ijk contains a
successor group, ‘i’ is not the first, ‘j’ is not the
second and ‘k’ is not the third letter of the alphabet.
Again, this tweak of changing the starting letter
from ‘a’ to ‘i’ results in a considerably less
satisfying solution overall, although the themes of
‘successorship’, ‘sameness’ and ‘length’ are
common to both problems. The meta-analogy that I
am proposing is then of this form:

abc/xyz : abc/mrrjjj :: rst/xyz : ijk/mrrjjj

As an aside, I still get a nosebleed every time I try
and decide whether people can manage meta-meta-
analogies, and whether this might be useful.
Suggestions or tissues would be welcome.

Using the parallel terraced scan to compare
problems

Metacat’s means of retrieving past cases appears to
be very limited. In the terminology of case-based
reasoning [Leake (1996), Kolodner], its retrieval is
indexed by the letterstrings and by themes, and not
at all by the structure of the trace. What if we
wanted to find a case that had similar themes to the
one being considered, but used entirely different
letterstrings, and also involved lots of snags and
dismantling but eventually found a satisfying
solution? Metacat couldn’t conduct this search,
though we might well want it to. After all, what
could be more useful than to be reminded of a
superficially different but thematically similar
problem which was also problematic, but eventually
proved tractable? The way to do this would be to
conduct a parallel terraced scan on stored memories
to tentatively suggest a number of potential
candidates, and then winnow down to the particular
cases whose theme and trace structures match most
deeply. This is similar to what Gentner and
Markman [1997] refer to as the ‘many are called but
few are chosen’ principle.

Working on traces in the same way we work on
letterstrings

The lesson from the discussion of meta-analogies is
that really powerful and abstract thinking requires
the ability to further chunk relations and
transformations of already-chunked representations.
Metacat cannot do this. Its Slipnet is fixed in size
and repertoire, and the Slipnet nodes are internally
structureless. It cannot chunk events/themes in the
trace to compare traces at a higher level of
description.

The first major step towards addressing this would
be to treat the events (such as ‘snag’, ‘drop in
temperature’) that are stored in the Metacat trace
just like ‘event-letters’ in a meta-Workspace that we
might term the ‘Trace-Workspace’, along with an
accompanying Trace-Slipnet and Trace-Coderack
too. Events could then be chunked together to form
event-structures of different types, such as:

the ‘loop’, when the same snag is experienced
repeatedly, and no huge drop of temperature
results (which would indicate that a solution
had been found)

the ‘destructive rage’, involving a flurry of
activity from the dismantler codelets

Greg Detre, ‘Learning and analogy – making Copycat curious’

 pg 9

‘frustration’, where the same snag is
experienced repeatedly, followed by a
destructive rage
the ‘paradigm shift’, composed out of some
snags, subsequent dismantlings, some
reassembly and a huge drop in temperature

Of course, many many more will exist, if we want to
catalogue the various types and combinations of
events. Interestingly, if we were to try and represent
these event-structures as letterstrings, they might
look something like this (using capitals to
distinguish them from the standard letterstrings):

loop (L): SSS…
destructive rage (R): DDD…

frustration (F): e.g. SSSHDDD
or just: LHR

paradigm shift (P) e.g. SSSHDDDBC
or just: FBC

where:

S – snag
D – dismantlement
B – building a structure
C – large drop in temperature (colder)
H – large increase in temperature (hotter)

This simple (and ugly) notation is intended to
illustrate a few important points.

Firstly, notice that the loop and destructive rage look
just like special kinds of sameness-groups. SHD and
LHR look almost like successorship groups (though
allowing the same letter to have more than one
potential successor). D and B, and C and H, are
opposites. C is strongly associated with the
rightmost position. If we think of the events as
letters, then we find that our letterstring concepts
start to apply. This feels like an exciting, though
perhaps somewhat obvious-seeming, observation.
Given this pleasing applicability of letterstrings
concepts to our Trace-architecture, it make much
more sense to implement the Trace-Workspace as
simply an area within the standard Workspace.
Events would be represented at the same level as
letterstrings, Trace-concepts would interact with the
standard Slipnet-concepts in the same semantic
network (although the two groups would probably
be fairly sparsely inter-connected), and Copycat
codelets could operate upon Trace-structures
(though probably not vice versa). This approach
could well prove to have powerful advantages,
especially with regard to the discussion below about
the generation of concepts (fresh or compound). For
the moment though, I will continue to talk as though
the Trace-architecture is kept separate from the
standard architecture for simplicity of exposition.

Secondly, we need a better means of writing down a
schema or template for structures. We want to say
that a loop has some indefinite number of snags,
perhaps with other events sandwiched in between –
in other words, we want to say (S.)*, using the
powerful notation of regular expressions. In fact, I
will discuss below how the regular expression
notation could be utilised as a means of representing
structures and codelet algorithms across the Copycat
letterstrings domain.

Thirdly, we now have a high-level description that
might constrain our trawl through memory when
trying to find past problems that usefully resemble
the current one. Metacat already looks for problems
that have similar themes to the current one, such as
‘symmetry’, ‘successorship’, ‘predecessorship’,
‘first letter of alphabet’ and ‘end of alphabet in the
case of the abc/xyz problem. It can tell that the
rst/xyz version lacked the ‘first letter of alphabet’
and ‘symmetry’ themes, which is why it’s different.
Now, perhaps CuriousCat could seek as well for
past problems that match these thematic
descriptions, as well as having a paradigm shift (for
instance) somewhere along the way. It could also
see whether all the remembered problems similar to
the rst/xyz version involved frustration without a
paradigm shift, as a means of deciding that further
effort on a problem which consistently appeared to
have no satisfying solution would be fruitless.

Fourthly, I don’t think it’s entirely a coincidence
that very emotive words like ‘frustration’ and ‘rage’
seem to so aptly describe the trace-patterns
described here. Being stuck (when there are few
particularly urgent codelets waiting and few salient
structures calling for attention), feeling encouraged
(a series of small drops in temperature) and
resignation (when a problem is deemed intractable)
are other emotional states that we can easily imagine
might fit into this Trace-based language of the
emotions. Might even humour be partially
describable as a slightly far-fetched or unusual,
incongruous or unexpected trace-pattern? As we will
see later, I also think that curiosity can be seen
partly in these terms.

Finally, the incorporation of the Trace-architecture
would go some way towards allowing CuriousCat to
see the meta-analogy described above, where we are
comparing two pairs of analogies, in which a single
superficial-seeming tweak (to the starting letter) has
caused one problem to be considerably more
frustrating than another.

Seeing such a meta-analogy requires seeing that:

a) they share some similar themes, but the rst/xyz
version lacks some

b) all of the runs on both problems involve lots of
snags, dismantling and rebuilding, but one
problem (abc/xyz) occasionally admits a highly

Greg Detre, ‘Learning and analogy – making Copycat curious’

 pg 10

satisfying solution while the other (rst/xyz)
never does

c) seeing that both these points also hold true of
the second pair of problems, ijk/mrrjjj and
ijk/mrrjjjj

We would be using a parallel terraced scan to do a
search through the traces themselves, in order to
appreciate that each pair of problems consists of a
slight dissimilarity in themes resulting in a drastic
difference in how satisfying their best solutions are.
Of course, if we were now to keep a trace of the
activity on the Trace-Workspace, a ‘Trace-Trace’,
then it would be possible to search through past
meta-analogy cases to find similar meta-analogies to
the one above.

The architecture I have sketched above does not go
into enough detail to show exactly what kind of
trace-concepts, codelets and rule-transformations
would be needed, nor exactly how the trace and
theme information for each problem would be
represented on the Trace-Workspace. But it is hoped
that it does show how the natural and elegant
extension of the Metacat architecture of treating
trace data at the same level and with the same
mechanisms as the letterstrings could dramatically
increase the power and abstraction of its analogy-
making.

Proposing new analogies
Before going any further, I’m going to make what
will seem like a digression in order to tie up a thread
that we will need for our grand knot later. I’m going
to muse about how CuriousCat might perhaps
propose its own analogies.

The simplest way to do this would be to start by
retrieving a problem from memory, This should
ideally be one with a satisfying solution, indicating
that it had been fully understood and that all the
requisite concepts were available. Then the system
could simply fire a rule-transfer codelet at the
corresponding structure in all four strings, and see if
the analogy still holds. In this way, it could start to
see what sort of transformations preserve a
particular analogy, and which destroy or undermine
it. This subtle comparison of analogies is another
way of seeing exactly the kind of thing we were
doing with our discussion of meta-analogy earlier.

Alternatively, the system could start with a blank
Workspace, and enter a special mode where builder
codelets are run on empty space, generating
placeholder structures without any letters in them.
Then, we could randomly choose a starting letter
(biased perhaps towards ‘a’ and ‘z’), and the rest of
the string should then be deterministically
generable. Finally, a stochastically chosen rule-
transfer codelet R1 would generate a transformation

from A to B, another rule-transfer codelet R2 would
transform from A to C, and then R1 would be run
again on C to generate D.

Neither of these methods have been adequately
fleshed out, but I feel that this cursory outline serves
to show that proposing new analogies should not be
an especially difficult problem. Proposing
interesting analogies based around a theme is, of
course, a more fiendish business, but one that we’ll
set aside.

Expectation
In his roadmap for Magnificat, Roberts
[unpublished] introduces the notion of ‘expectation’,
which I think will prove especially relevant to
making CuriousCat curious. It’s clear that
expectation-violation is one of the triggers for
curiosity – when I’m surprised, I get curious about
why my predictions were wrong.

Two parts of the dictionary [NSOED] definition of
expectation caught my eye: “The state or mental
attitude of expecting something to happen” and
“Grounds for expecting; especially prospects of
inheriting wealth”. Expectation is a state, it has
intentionality (i.e. you expect something) you have
grounds for this expectation, and often it’s related to
the prospect of good things to come. This doesn’t
help us a great deal.

Instead, I tried to characterise expectation in a much
barer form in terms of the Copycat architecture: an
expectation is a top-down influence that directs
bottom-up processing to look for something specific
that would lead to a drop in temperature if found.
This is by no means a rigid or full definition, and
I’m sure it could easily mislead us if taken too
seriously.

Roberts’ discussion of it is short and tantalising. He
proposes a “set of codelets operating simultaneously
on the Workspace, comparing and contrasting,
building expectations and tearing them down:
building brand-new structure” and a recall process,
which compares the Workspace with his version of
a long-term conceptual memory:

“[pulling structure] into the Workspace bit by
bit, as urgency demands. If an instance of recall
is particularly powerful (it matches structure
and fulfils expectations well, thus resolving
questions) then its urgency will cause it to
proceed rather quickly and completely, but if a
memory fits a situation only vaguely, then it will
influence the structure in the Workspace only
vaguely”

“An expectation can be seen as a scan in
progress – it wants to be fulfilled with
something, be that something additional

Greg Detre, ‘Learning and analogy – making Copycat curious’

 pg 11

structure in the Workspace, or structure it
builds in the Workspace, or structure copied
from the [LTM]. I expect the expectation to be a
rather powerful organizing force in
Magnificat’s operation.”

I can’t really do much better than that, but I want to
try and be more specific. If we reify this expectation
on the Workspace as a kind of placeholder structure
waiting to be instantiated, we can treat a failure to
find part of the letterstrings to fit into it as an
violation of this expectation. In a way, the weak
bond-structures that get tentatively formed then get
quickly dismantled when they interfere with a much
stronger structure, or the bridges between strings
that don’t quite fit all of the structures on each side
and get broken down are also expectations that get
violated. The difference though is that these are
instantiated structures that get built in response to
things that are known to exist on the Workspace,
whereas the placeholder structures are only there
because the recall process has found past or
analogous memories that indicate they might be. In
either case, Copycat response would:

• raise the temperature (making the whole
system’s functioning more stochastic)

• direct processing towards those areas of the
Workspace to try and resolve the issue

In other words, it will become curious about them.
Furthermore, CuriousCat will be able to:

• look for cases in its memory that might be less
obviously applicable (i.e. more abstract,
perhaps)

• flag the expectation-violation in its trace

and eventually:

• try and form a new concept to plug the gap in
its conceptual repertoire.

It is to this last vital and difficult process that I now
turn.

Forming new concepts and codelets
The area that I've spent longest with least reward
considering is the issue of how to automate
generation of the Slipnet and its associated codelets.
This is, in its fullest sense, the AI complete problem
of mechanistically and efficiently generating
compact hypotheses/categories that capture all and
only the features that identify a given set of
examples. If we consider analogy-making to be the
business of using low level concepts to build high-
level concepts that relate situations, then having the
right set of low-level concepts for each domain is
crucial, as is the ability to generate new concepts
should some unexpected aspect of the situations

prove to be the essence of the analogy. Indeed, we
can see all learning in terms of forming concepts
and applying them to perception in such a way as to
generate useful behaviour.

For a concept to exist in the Slipnet, it requires an
associated family of codelets that do the detection,
structure-building and -evaluating, dismantling,
rule-translating etc. In order to generate a new
concept, the node has to be inserted into the Slipnet,
assigned a conceptual depth, associated with other
concepts, and the whole family of codelets has to be
generated. If we see the structures in the Workspace
as tokens of concept types in the Slipnet, then
generating new structures from the Slipnet nodes
and associated codelets is comparatively trivial.

Adding a node to the Slipnet can be done in one of
at least a few ways. It can be generated afresh,
assigned a default conceptual depth and connected
weakly to every single other concept. We could then
use some hill-climbing search again to try and
search through its parameter space, as before when
tweaking all of the system’s parameters with the
GA. If this method were to prove necessary, it
would be worth thinking about how the system
could learn after each new problem is presented,
perhaps by doing its Slipnet tweaking offline. A
second method would be to copy and paste an
existing similar concept, mirroring its conceptual
depth and associations to other concepts. This is
difficult though, because it requires you to figure out
which of your current concepts the new, mysterious
concept is most similar to. Ideally, we would want
to be able to create compound concepts out of
combinations of current concepts, or even splice
together aspects of two concepts. To do this would
require nesting concept-nodes in the Slipnet.

Next, we need to generate new accompanying
codelets. We can see two major groups of codelets:
those that deal with structures (whether within or
between strings), and those that take the rule found
that transforms from A to B, and adapt or apply it to
C to produce D.

A : B :: C : D

Generating new rule-transfer codelets seems a
particularly intractable problem. Let me try and
explain why. Let us imagine that we wanted a
‘mirroring’ concept, that takes a structure and placed
a copy of the reverse-string to its right. Let us
imagine that we already have an algorithm for the
seeker codelets, so they can tell when they’ve found
one – once we’ve identified a string as instantiating
a concept, we can also build the concept as a
structure and we can dismantle it. However, the
algorithm that applies the mirror-rule to a part of the
string in A to produce B, and in C to produce D is
still highly problematic. The only mechanistic
method I could devise to be sure to eventually

Greg Detre, ‘Learning and analogy – making Copycat curious’

 pg 12

capture the right rule-transfer algorithm would be to
do an exhaustive breadth-first search through the
source code of some Turing-complete language. For
instance, we could take as our alphabet the handful
of operations that allow us to define any Turing
machine (move tape left, read off digit etc.), and
starting with the strings of length 1, build longer and
longer strings until we found a Turing machine that
performed our rule transfer. We have all the
representational power we could possibly want with
this method, but it’s wholly useless as a realistic
implementation solution. The only solution may be
to devise a domain-specific high-level language for
each domain of rule-primitives like ‘move letter in
position X to position Y’, ‘replace letter X with …’
etc. Unfortunately, this brings a human back into the
loop, and so in a sense is admitting defeat. Perhaps
there is a way to deal with the problem of generating
rule transfer codelets in terms of the seeking and
building codelets, which I think are a little easier to
think about.

I will propose a possible letterstrings
implementation for the structure-codelets because
it’s reasonably neat, and might grease our intuition
about the kind of complementary language we
would need for rule-transfer codelets. The proposal
is to use some variant of regular expressions to
capture all and only the letter combinations that
instantiate a particular concept. To give two
examples, sameness would look something like
(a*|b*|c*|d*|…) and successorship might look like
(ab|bc|cd|de|ef|…), where obviously ‘…’ is a
technical symbol for my laziness. In the case of
successorship, we would have to build successorship
groups of length greater than 2 by nesting small
ones. This would slightly change things, and would
probably require tweaking the successorship
parameters to make them easier to build in some
way in order to be sure that the system notices all of
a long successorship group. This problem highlights
the fact that regular expressions are limited in the
kinds of string combinations that they can represent,
and so this is not a fully satisfying solution. Of
course, in the worst case we could restrict the length
of our strings to some finite number, and then
enumeration would always be an option.

In fact, the possibility of huge enumerated lists that
supposedly capture some concept could actually
prove a problem. We want to capture the best
regular expression for a given concept, i.e. the one
that captures all and only the strings that instantiate
that concept, using as few enumerations as possible.
One way of intuitively understanding this ‘minimum
description length’ (MDL) (Rissanen, 1978) is as
the optimal, most compact compromise between a
huge list of examples/exceptions, and a single, very
lengthy rule that fully captures all the data. Fass and
Feldman [2002] discuss how they were able to use
the MDL as an indicator of the subjective difficulty

of learning some given category. The MDL two-part
code will be maximally compact when the following
equation is minimised:

-log P(D|H) – log P(H)

where D is the data and H the category hypothesis.
The MDL is thus intended to capture “all the data,
including the uninformative noisy data that isn’t
generated by the models” [Rissanen, 1999]. It might
be interesting for our purposes to be able to tip the
scales of the trade-off between model complexity
and data complexity when representing different
types of concept.

An alternative approach would be to ignore regular
expressions, but still use the idea of evaluating the
power of a concept-representation by its minimum
description length. We could instead use some sort
of substitutional/dictionary encoding [Hankerson et
al., 2003], where the system tries to choose as
compact as possible a codebook that losslessly
encodes all of the strings encountered so far. The
serious and unavoidable problem with this method is
that it doesn’t work well with systematic but sparse
data. So, even if the system had learned the
successorship concept for the letters it commonly
encounters but had never seen a letterstring using
the letter ‘p’ before, none of the learned concepts
would have ‘p’ in their codebooks, and it would not
be true at all to say that the system had really
understood the concept.

Finally, it’s worth noting that Roberts proposes that
a suite of generic codelets could be devi sed that
would prove applicable to various domains. This
would be great, if possible. His approach is to
devolve much of the information from the codelet
algorithms to the long-term conceptual memory that
he intends to replace the Slipnet and its concept-
nodes. These LTM-nodes will have internal
structure, and will be composed out of other LTM-
nodes. Though interesting, I don’t see why it would
be any easier to build up the internal structure of an
LTM-node than it would be to have codelet
algorithms with internal structure, which is one way
to see the above proposals. In short, I don’t know
how his proposal makes the business of generating
arbitrary and complex new concepts easier. My only
thought is that if we can find a powerful enough
representation for the codelet algorithms in the
letterstrings domain, we might try and encode other
domains in terms of letterstrings. Unfortunately, I
don’t think this would work so well in domains with
continuous rather than discrete perceptual atoms
(e.g. some real-number-strings version of
Seekwhence – see Hofstadter, 1995, ch 1).

The two central problems of forming new concepts
are:

• how to tell when a new concept is needed

Greg Detre, ‘Learning and analogy – making Copycat curious’

 pg 13

• how to tell what it should do

I have tried to address the second point, but the first
remains. How do you realise when you have a gap
in your knowledge that would be useful to fill in? In
fact, we answered this question earlier, when we
discussed expectation-violation. Forming a new
concept was the last in a chain of increasingly
drastic options to be undertaken in the face of a
series of stubborn expectation violations. We can
see almost all of the discussion so far of architecture
extensions as being instrumental in helping the
system tell when a new concept is needed and what
it should do.

Let us imagine that CuriousCat has been presented
with a number of problems, for which it was unable
to find any solutions whatsoever (or perhaps very
unsatisfying ones) for some small proportion. Every
time it encounters another unsolvable problem, it
flags the expectation-violations and failure in its
trace, and tries rebuilding in different ways, and
starts various trawls through its memory based on
redescriptions of the current situation. It decides to
try looking for some concept that will help with a
number of these problems, and so uses the
unsolvable ones to focus its training set. It tries
proposing new analogies based around these
problematic cases, and tries to see if it can solve
them itself. If it can, then they might provide clues
about how to solve the problematic ones. Or, it
might indicate that something about the
transformations added to generate the new analogies
affected the missing concept in some way, and
rendered it either unnecessary or tractable. Noticing
which themes are added and missing in all of these
cases, should provide a good indication of which
concepts are similar to the prospective concept.

Of course, the previous discussion assumes that
there is only one new concept waiting to be
discovered. If there are two or more, the new
concept will end up as some sort of amalgam of
them all. To resolve this, we need further
mechanisms for splitting concepts into two. For this,
we could use the same architecture-extensions to
pay attention to the frequency with which a pair of
concepts are fighting to be instantiated
simultaneously as a structure on the same letters.
This covariance might indicate an overlap.

Now, I want to return to my early definition of a
curious machine as one that interrogates its
environment. CuriousCat can be seen as engaging in
an interative dialogue with the environment about
what is required of a new concept. When it starts to
feel that a new concept is necessary, CuriousCat can
probe the boundaries and situations in which the
concept applies by proposing meta-analogies, i.e. by
asking ‘is this case like this case’? If we allow it a
reward signal for the strength of the meta-analogies,
the hope is that could learn a great deal in a short

time by constraining the space in which the new
concept applies.

Applications
I had very much hoped to discuss how CuriousCat
would deal with being ported to two new domains
(chess, and something similar to Evans’ original
geometric puzzles), and how well I thought it would
be able to manage without extensive human hand-
holding, but unfortunately time and space preclude
this.

Conclusions

Mapping and transformation
As may have become apparent, I have focused far
more on the problem of mapping than
transformation. For instance, in the discussion on
traces and meta-analogies, I proposed a means of
retrieving past situations that might be related in an
abstract way, but I hardly mentioned how we might
use this knowledge, other than to occasionally
concluding when to give up on clearly fruitless
problems. Having found a past case that’s analogous
to this one, we want to see how the solution found
there guides the search for a solution to the current
problem. For instance, having found the meta-
analogy between abc/xyz//rst/xyz and
abc/mrrjjj//ijk/mrrjjj, we want to draw some
conclusions about the kinds of tweaks that do and
don’t affect how satisfying a problem’s solution is.
In the terminology of case-based reasoning, I have
focused upon the case-based remembering, rather
than case-based adaptation.

This is partly because one of my primary
motivations was to think about how a chess program
could aid a human player by presenting analogous
examples from past games, so that the human player
could see how they unfolded and adapt his game
plan accordingly. The responsibility for modifying
the retrieved cases lay squarely with the human,
since this is a somewhat different and very difficult
problem far beyond the scope of this discussion.

To some degree, this is also because the lessons
learned from Copycat about fluid concepts scale
well, while the Metacat architecture is less rich as a
source of ideas about traces, cases and episodic
memory. To some degree, I think the architecture
extensions proposed here might support this further
task of adaptation. However, much more work is
needed.

Greg Detre, ‘Learning and analogy – making Copycat curious’

 pg 14

Relations to a richer definition of
curiosity
At the beginning, I gave a rich characterisation of
curiosity along the following lines:

Being curious is about seeking knowledge that
you don’t even know for sure that you’ll need.
It’s proactive, requires a learning system and
cognitive architecture complex enough to
subserve goal-directed and flexible behaviour,
recognition of novelty, and some degree of
(self-)evaluation. The more complex and
diverse the goals, behaviours and
representations, the more complex the curiosity
manifested. There can be different types of
curiosity, triggered under different
circumstances, suited to different domains,
goals or learning styles.

I don’t believe that CuriousCat would be ‘curious’
in a truly rich sense, but I felt happy with that
characterisation of curiosity when I gave it, and I do
feel that the architecture described goes a long way
towards it in at least two-thirds of the ways listed.
This also serves to make apparent the folly of
seeking a single ‘curiosity’ module, given how
many different functions, often originally designed
with different goals in mind, were eventually drafted
in as integral to the business of being curious.
Curiosity just results from the system’s methods of
learning proactively.

References
S. Bolland, ‘CopyKitten: A Java-Based Implementation
and Tutorial of the Copycat Model of analogical thought’,
Honours thesis, School of Information Technology, UQ,
1997.

Carbonell, J. (1986), ‘Derivational analogy: a theory of
reconstructive problem-solving and expertise acquisition’,
in Michalski, Carbonell and Mitchell (ed.), Machine
Learning: an Artificial Intelligence Approach, vol II.

Chalmers, French and Hofstadter (1991), ‘High-Level
Perception, Representation and Analogy: A Critique of
Artificial Intelligence Methodology’ in Hofstadter (1995).

Desai, R., ‘Structure-Mapping vs. High-level Perception:
Why the Fight is Not Mistaken’, in Proceedings of the
19th Annual Conference of the Cognitive Science Society,
Stanford, CA, 1997.

Evans, T., 'A program for the solution of geometric
analogy intelligence test questions' in Minsky (1968),
Semantic information processing.

Feldman, J. (2002), ‘Simplicity and complexity in human
concept learning’ 2002 George Miller Award Address,
The General Psychologist.

Fass, D. and Feldman, J. (2002), ‘Categorization under
complexity: a unified MDL account of human learning of

regular and irregular categories’, in Advances in Neural
Information Processing Systems.

French, R. M. (2002). The Computational Modeling of
Analogy-Making. Trends in Cognitive Sciences, 6(5),
200-205.

Gentner & Markman (1997), in American Psychologist,
vol 52, no. 1, pp 45-56.

Hankerson et al. (2003), Introduction to information
theory and data compression.

D. Hofstadter, (1995). Fluid Concepts and Creative
analogies: computer Models of the Fundamental
Mechanisms of Thought. NY: Basic Books.

- (1995). A Review of Mental Leaps: Analogy in
Creative Thought." AI Magazine, Fall 1995, 75-80.

Holland, J. H. (1975, reprinted 1992), Adaptation in
natural and artificial systems, MIT Press.

Kelly, K. (1995), ‘By analogy’, in Wired, issue 3.11,
November.

Kolodner, in Leake (1996), ch 2.

Koza 1997 – for Encyclopedia of Computer Science and
Technology, Kent & Williams (ed.).

Langley, Simon, Bradshaw & Zytkow (1987), Scientific
discovery: computational explorations of the creative
processes.

Leake, D. (1996), ed., Case-based reasoning.

Marshall, J. B. (1999), Metacat: a self-watching cognitive
architecture for analogy-making and high-level
perception, PhD thesis, Indiana University, Bloomington.

Minsky, The Emotion Machine (forthcoming).

- ‘Why people think computers can’t’, online.

- ‘Jokes and the cognitive unconscious’, online.

Mitchell, M., Analogy-Making as Perception, MIT Press,
1993.

Mitchell, M., (1996), An Introduction to Genetic
Algorithms. Cambridge, MA: The MIT Press.

Morrison, C. & Dietrich, E. (1995), ‘Structure-mapping
vs. High-level perception: The mistaken fight over the
explanation of analogy’, in Proceedings of the
Seventeenth Annual Conference of the Cognitive Science
Society (pp. 678-682).

Rissanen, J. (1978), ‘Modeling by shortest data
description’, in Automatica, 14, 465-471.

Rissannen, J. (1999), Rejoinder, in ‘The Computer
Journal’, vol. 42, no. 4.

Roberts, M. (unpublished), ‘A cognitive manifesto’,
google “Michael Roberts Magnificat”.

Sutton, R. and Barto, A. (2002), Reinforcement learning.

Veloso, M. ‘Flexible strategy learning using analogical
replay of problem-solving episodes’ in Leake (1996).

Vitanyi, P. and Li, M. (2002), ‘Minimum description
length induction, Bayesianism and Kolmogorov
complexity’, online.

Winston, P. H. (1980), ‘Learning and reasoning by
analogy’, in CACM, vol. 23, no. 12, pg. 689.

Greg Detre, ‘Learning and analogy – making Copycat curious’

 pg 15

Figures

Figure 1 – Copycat Slipnet
see attached file – ‘copycat slipnet organisation.pdf’

Figure 2 – Copycat Workspace for the abc/xyz problem

Figure 3 – Copycat workspace on the abc/mrrjjj problem

